Multiplicative Persistence of nonzero fixed point digits

Colin Lubner
Robert Styer
(correspondence: Department of Mathematics and Statistics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085-1699, phone 610-519-4845, fax 610-519-6928, robert.styer@villanova.edu)

Keywords: persistence, digit problem, multiplicative persistence, iterated digit functions
Mathematical Subject Classification 2010: Primary: 00A08, 97A20

Abstract

If $f(n)$ is the product of the digits of f, we define the multiplicative persistence of n as the number of iterations k needed so $f^{k}(n)$ is a single digit. Almost all positive integers have a fixed point zero; we investigate those cases whose fixed point is a nonzero digit. In bases $4,6,10$, and 12 , if the fixed point is relatively prime to the base, the maximum persistence is one.

1 Introduction

Neil J. A. Sloane, perhaps best known as the creator and maintainer of the Online Encyclopedia of Integer Sequences (OEIS), defines the multiplicative persistence of a number as the number of steps to reach a onedigit number when repeatedly multiplying the digits together [9]. (As a side note, Sloane is also the author of two rock-climbing guides to New Jersey [6], [7].) He conjectured that the number of iterates needed to reach a fixed point is bounded, in particular, in base 10 , he conjectured that one needs at most 11 iterates to reach a single digit.

Definition 1. Let $n=\sum_{j=0}^{r} d_{j} B^{j}$, with each $0 \leq d_{j}<B$, be the base B expansion of n. We define the digital product function as $f(n)=\prod_{j=0}^{r} d_{j}$.

The persistence of a number n is defined as the minimum number k of iterates $f^{k}(n)=d$ needed to reach a single digit d. We will say that n collapses to the digit d.

It is well known that every number has finite persistence, and that almost all numbers iterate to zero (see [1], [2], [3], [4], [8], [10]). In this paper we consider the iterates that collapse to nonzero digits in base 10.

Example: Let $n=5579$. Then $f(5579)=5 \cdot 5 \cdot 7 \cdot 9=1575$, then $f(1575)=1 \cdot 5 \cdot 7 \cdot 5=175$, then $f(175)=1 \cdot 7 \cdot 5=35$, then $f(35)=3 \cdot 5=15$, and $f(15)=1 \cdot 5=5$; in other words, $f^{5}(5579)=5$, so 5579 has persistence 5 .

One easily sees that $n=9755$ or $n=137155311$ or $n=191151117511$ also have persistence 5 , since each of these has $f(n)=1575$. Thus, adding or removing the digit 1 does not change the persistence, nor does rearranging the digits, nor does replacing digits that are products of smaller digits by these smaller digits (such as replacing 9 by two digits 3) affect the persistence.

We claim that the maximum persistence of a number that collapses to $1,3,7$, or 9 is 1 . We also will find probable bounds for the persistence of a number that collapses to $2,4,5,6$, or 8 .

2 Fixed points relatively prime to the base

Looking at a table of values of n that collapse to a nonzero digit (see [11]), one notes that numbers which collapse to $1,3,7$, and 9 look quite simple.

The easiest case is when $f\left(n_{1}\right)=1$. This can only happen when each digit of n_{1} is 1 , that is, $n_{1}=$ $\left(10^{m}-1\right) / 9$ for some positive integer m. Now suppose $f\left(f\left(n_{2}\right)\right)=1$. Then $f\left(n_{2}\right)=\left(10^{m}-1\right) / 9$, so the product of the digits of n_{2} must end in a 1 (that is, viewing the product modulo 10), thus n_{1} has no even digits nor a digit 5 . Thus, the only possible digits of n_{2} are $1,3,7$, and 9 , hence $f\left(n_{2}\right)=3^{a} 7^{b}$ for some nonnegative integer powers a and b. Note that $3^{20} \equiv 1 \bmod 100$ and $7^{4} \equiv 1 \bmod 100$. One can verify that $3^{a} 7^{b} \not \equiv 11 \bmod 100$ for any $0 \leq a<20$ and $0 \leq b<4$. Thus, it is not possible for any n_{2} to have $f\left(n_{2}\right)$ be a repunit with all digits 1 . In other words, the only numbers that iterate to 1 are repunits $\left(10^{m}-1\right) / 9$.

Amazingly, this same idea works for 3,7 , and 9 as well.
Theorem 1. Suppose $f^{k}(n)=1,3,7$, or 9 for some iterate k. Then n has maximum persistence 1. More precisely:

- Suppose n collapses to 1 . Then $n=\left(10^{m}-1\right) / 9$ for some positive integer m.
- Suppose n collapses to 3. Then n has a single digit 3 and the rest of the digits are 1.
- Suppose n collapses to 7. Then n has a single digit 7 and the rest of the digits are 1.
- Suppose n collapses to 9. Then n has either a single digit 9 or exactly two digits 3, and the rest of the digits are 1.

Proof. Suppose there is a number n with persistence $k \geq 2$ collapsing to $1,3,7$, or 9 . Let $n_{2}=f^{k-2}(n)$ and $n_{1}=f^{k-1}(n)$. Since $f\left(n_{1}\right)=1,3,7$, or 9 , then every digit of n_{1} must be 1 , except for a possible single digit of 3 or 7 or 9 , or two digits equaling 3 . In particular, the last digit of n_{1} cannot be even or 5 . Since the last digit of n_{1} is not even nor $5, n_{2}$ cannot have any even digit or a digit of 5 . So the only possible digits of n_{2} are $1,3,7$, or 9 . Thus, $f\left(n_{2}\right)=n_{1}=3^{a} 7^{b}$ for some nonnegative integers a and b.

We look at $3^{a} 7^{b}$ modulo 100 . Note 3 is of order 20 modulo 100 , and 7 is of order 4 modulo 100 . One can verify that for every choice of $0 \leq a<20$ and $0 \leq b<4$, the next to last digit (the tens digit) is always even. Since every n_{1} has all odd digits, $3^{a} 7^{b}$ can never equal n_{1}. So it is impossible to find any n_{2} with $f\left(n_{2}\right)=n_{1}$, proving our theorem.

This type of argument can never work if $B+1$ is composite; if base B has $B+1=d_{1} \cdot d_{0}$, then $f^{2}\left(d_{1} \cdot B+d_{0}\right)=f\left(d_{1} \cdot d_{0}\right)=f(B+1)=1$. If $B+1$ is prime, this type of argument still might fail, for instance, in base $16, f^{2}(37 D)=f(111)=1$, while in base $18, f^{2}(777)=f(111)=1$. But the same base 10 argument does work for bases 4,6 , and 12 .

Theorem 2. Let the base $B=4$. Suppose $f^{k}(n)=1$ or 3. Then n has maximum persistence 1 .
Let the base $B=6$. Suppose $f^{k}(n)=1$ or 5 . Then n has maximum persistence 1 .
Let the base $B=12$. Suppose $f^{k}(n)=1$ or 5 or 7 or the digit 11 . Then n has maximum persistence 1 .
Proof. Consider base $B=4$. Suppose there is a number n with persistence $k \geq 2$ collapsing to 1 or 3 . Let $n_{2}=f^{k-2}(n)$ and $n_{1}=f^{k-1}(n)$. Since $f\left(n_{1}\right)=1$ or 3 , then every digit of n_{1} must be 1 , except for a possible
single digit of 3 . In particular, the last digit of n_{1} must be 1 or 3 . Since the last digit of n_{1} is not 0 or 2 , n_{2} cannot have a 0 or 2 digit. So the only possible digits of n_{2} are 1 and 3 , so $f\left(n_{2}\right)=3^{a}$ for some positive integer a. Note that $3^{4} \equiv 1 \bmod 4^{2}$. Since, in base $4,3^{1} \equiv 03 \bmod 100,3^{2} \equiv 21 \bmod 100,3^{3} \equiv 23 \bmod 100$ and $3^{4} \equiv 01 \bmod 100$, we see that the second digit (the 'fours' digit) is always even. But every n_{1} has all odd digits, so 3^{a} can never equal n_{1}. Thus, it is impossible to find any n_{2} with $f\left(n_{2}\right)=n_{1}$, proving the base 4 case.

Similarly, consider base $B=6$. Suppose there is a number n with persistence $k \geq 2$ collapsing to 1 or 5 . Let $n_{2}=f^{k-2}(n)$ and $n_{1}=f^{k-1}(n)$. Since $f\left(n_{1}\right)=1$ or 5 , then every digit of n_{1} must be 1 , except for a possible single digit of 5 . In particular, the last digit of n_{1} must be 1 or 5 . Since the last digit of n_{1} is not $0,2,3$, or $4, n_{2}$ cannot have a $0,2,3$, or 4 digit. So the only possible digits of n_{2} are 1 and 5 , so $f\left(n_{2}\right)=5^{a}$ for some positive integer a. Note that $5^{6} \equiv 1 \bmod 6^{2}$. In base $6,5^{1} \equiv 05 \bmod 100,5^{2} \equiv 41 \bmod 100$, $5^{3} \equiv 25 \bmod 100,5^{4} \equiv 21 \bmod 100,5^{5} \equiv 45 \bmod 100$ and $5^{6} \equiv 01 \bmod 100$; we see that the second digit (the 'sixes' digit) is always even. Since every n_{1} has only digits 1 and $5,5^{a}$ can never equal n_{1}. So it is impossible to find any n_{2} with $f\left(n_{2}\right)=n_{1}$, proving the base 6 case.

Finally, consider base $B=12$. Suppose there is a number n with persistence $k \geq 2$ collapsing to 1,5 , 7 , or the digit ' 11 '. Let $n_{2}=f^{k-2}(n)$ and $n_{1}=f^{k-1}(n)$. Since $f\left(n_{1}\right)=1,5,7$, or the digit ' 11 ', then every digit of n_{1} must be 1 , except for a possible single digit of 5 or 7 or ' 11 '. In particular, the last digit of n_{1} must be $1,5,7$, or ' 11 '. Since the last digit of n_{1} is not even or divisible by $3, n_{2}$ cannot have digit which is even or divisible by 3 . So the only possible digits of n_{2} are $1,5,7$, or ' 11 ',so $f\left(n_{2}\right)=5^{a} 7^{b} 11^{c}$ for some nonnegative integers a, b, c (at least one exponent is positive). Since 5,7 , and 11 have orders 12,6 , and 12 modulo 12^{2}, respectively, we only need to check $5^{a} 7^{b} 11^{c}$ modulo 12^{2} for $0 \leq a<12,0 \leq b<6$, and $0 \leq c<12$. One can verify that each $5^{a} 7^{b} 11^{c}$ has an even digit in the second place (the "tens" digit in duodecimal). Since every n_{1} has only odd digits, $5^{a} 7^{b} 11^{c}$ can never equal n_{1}. So it is impossible to find any n_{2} with $f\left(n_{2}\right)=n_{1}$, proving the base 12 case of the theorem.

3 Bounds on persistence of numbers collapsing to $2,4,5,6,8$

We now return to base $B=10$. In the previous section we dealt with the cases when $f^{k}(n)=1,3,7$ or 9 . We now find lower bounds on the persistence of the other nonzero decimal digits.

Theorem 3. Let $n<10^{1000}$ be a positive integer.
If $f^{k}(n)=2$, the persistence k is at most 6 ; only n with $f(n)=2^{6} 7^{8}$ have persistence 6 .
If $f^{k}(n)=4$, the persistence k is at most 5; only n with $f(n)=2^{23} 3^{7} 7^{1}$ have persistence 5 .
If $f^{k}(n)=5$, the persistence k is at most 5 ; only n with $f(n)=3^{5} 5^{1} 7^{2}$ or $3^{2} 5^{2} 7^{1}$ or $3^{2} 5^{2} 7^{3}$ have persistence 5.

If $f^{k}(n)=6$, the persistence k is at most 8 ; only n with $f(n)=2^{6} 3^{27} 7^{1}$ have persistence 8 .
If $f^{k}(n)=8$, the persistence k is at most 6 ; only n with $f(n)=2^{20} 3^{5} 7^{1}$ or $2^{39} 3^{3} 7^{2}$ have persistence 6 .
Proof. As before, we write $f(n)$ in terms of the digits $f(n)=1^{a} \cdot 2^{b} \cdot 3^{c} \cdot 4^{d} \cdot 5^{e} \cdot 6^{f} \cdot 7^{g} \cdot 8^{h} \cdot 9^{i}$ for some nonnegative integers a, b, c, d, e, f, g, h, and i. We replace each 4 with two 2 s, each 6 with a 3 and a 2 , each 8 with three 2 s , and each 9 with two 3s. Thus, $f(n)=2^{\alpha} \cdot 3^{\beta} \cdot 5^{e} \cdot 7^{g}$ where $\alpha=b+2 d+3 h$ and $\beta=c+2 i$. If $\min (\alpha, e)>0$ then the last digit of $f(n)$ would be zero, so n would collapse to zero, a case we are not considering in this paper. Thus, we only need to consider $f(n)=2^{\alpha} \cdot 3^{\beta} \cdot 7^{g}$ or $f(n)=3^{\beta} \cdot 5^{e} \cdot 7^{g}$. Since we are assuming n has at most 1000 digits, we have $\lceil\alpha / 3\rceil+\lceil\beta / 2\rceil+g \leq 1000$ and $\lceil\beta / 2\rceil+e+g \leq 1000$. Using Maple, we check the persistence for each $f(n)=2^{\alpha} \cdot 3^{\beta} \cdot 7^{g}$ or $f(n)=3^{\beta} \cdot 5^{e} \cdot 7^{g}$ that collapse to either $2,4,5,6$, or 8 , with the restrictions $\lceil\alpha / 3\rceil+\lceil\beta / 2\rceil+g \leq 1000$ and $\lceil\beta / 2\rceil+e+g \leq 1000$. We find that
none have persistence greater than the listed maxima for each case, and that the maxima in this range are reached only by the listed cases.

Based on similar calculations, we have these conjectural bounds on persistence: in base 4 , the maximum persistence of any number collapsing to 2 is 3 ; in base 6 , the maximum persistence of a number collapsing to the digit 2 or digit 4 is 5 , to the digit 3 is 2 ; in base 12 , the maximum persistence of a number collapsing to digits 2 or 10 is 3 , to digit 3 is 4 , to digit 4 is 6 , to digits 6 or 8 is 5 , to digit 9 is 4 .

References

[1] Beeler, M., Gosper, R.W., and Schroeppel, R. HAKMEM. MIT AI Memo 239, Feb. 29, 1972 http: //www.inwap.com/pdp10/hbaker/hakmem/number.html\#item56
[2] Carmody, P., OEIS A003001, and a 'Zero-Length Message'. 23 Jul 2001. http://listserv.nodak.edu/ cgi-bin/wa.exe?A2=ind0107\&L=NMBRTHRY\&P=R1036\&I=-3.
[3] M. R. Diamond, Multiplicative persistence base 10: some new null results, JoOUP 3 (2010), 1-10 http: //www.markdiamond.com.au/download/joous-3-1-1.pdf.
[4] Gottlieb, A. J., Problems 28-29 in "Bridge, Group Theory, and a Jigsaw Puzzle." Technology Rev. 72, Dec 1969, unpaginated
[5] Guy, Richard, "F25", Unsolved Problems in Number Theory 3rd edition, Springer 2004.
[6] Sloane, Neil and Nick, Paul, Classic Rock Climbs No. 5: New Jersey Crags, New Jersey. Chockstone Pr: 1999
[7] Nick, Paul and Sloane, Neil. Rock Climbing New Jersey. Falcon Publishing, Guilford: 2000. Print.
[8] Perez, Stephanie and Styer, Robert. Persistence: A Digit Problem. Involve: A Journal of Mathematics 8, 3 (2015), 439-446.
[9] Sloane, Neil J. A., The Persistence of a Number. Journal of Recreational Mathematics 6, 2 (1973), 97-98.
[10] Wagstaff, S. W., Iterating the Product of Shifted Digits, Fibonacci Quarterly 19 (1981), 340-347.
[11] Weisstein, Eric W., "Multiplicative Persistence." From MathWorld-A Wolfram Web Resourc http://mathworld.wolfram.com/MultiplicativePersistence.html, accessed 26 June 2012.

