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Abstract

If f(n) is the product of the digits of f , we define the multiplicative persistence of n as the number
of iterations k needed so fk(n) is a single digit. Almost all positive integers have a fixed point zero; we
investigate those cases whose fixed point is a nonzero digit. In bases 4, 6, 10, and 12, if the fixed point
is relatively prime to the base, the maximum persistence is one.

1 Introduction

Neil J. A. Sloane, perhaps best known as the creator and maintainer of the Online Encyclopedia of Integer
Sequences (OEIS), defines the multiplicative persistence of a number as the number of steps to reach a one-
digit number when repeatedly multiplying the digits together [9]. (As a side note, Sloane is also the author
of two rock-climbing guides to New Jersey [6], [7].) He conjectured that the number of iterates needed to
reach a fixed point is bounded, in particular, in base 10, he conjectured that one needs at most 11 iterates
to reach a single digit.

Definition 1. Let n =
∑r

j=0 djB
j, with each 0 ≤ dj < B, be the base B expansion of n. We define the

digital product function as f(n) =
∏r

j=0 dj.
The persistence of a number n is defined as the minimum number k of iterates fk(n) = d needed to reach

a single digit d. We will say that n collapses to the digit d.

It is well known that every number has finite persistence, and that almost all numbers iterate to zero
(see [1], [2], [3], [4], [8], [10]). In this paper we consider the iterates that collapse to nonzero digits in base
10.

Example: Let n = 5579. Then f(5579) = 5 · 5 · 7 · 9 = 1575, then f(1575) = 1 · 5 · 7 · 5 = 175, then
f(175) = 1 · 7 · 5 = 35, then f(35) = 3 · 5 = 15, and f(15) = 1 · 5 = 5; in other words, f5(5579) = 5, so 5579
has persistence 5.

One easily sees that n = 9755 or n = 137155311 or n = 191151117511 also have persistence 5, since each
of these has f(n) = 1575. Thus, adding or removing the digit 1 does not change the persistence, nor does
rearranging the digits, nor does replacing digits that are products of smaller digits by these smaller digits
(such as replacing 9 by two digits 3) affect the persistence.

We claim that the maximum persistence of a number that collapses to 1, 3, 7, or 9 is 1. We also will find
probable bounds for the persistence of a number that collapses to 2, 4, 5, 6, or 8.
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2 Fixed points relatively prime to the base

Looking at a table of values of n that collapse to a nonzero digit (see [11]), one notes that numbers which
collapse to 1, 3, 7, and 9 look quite simple.

The easiest case is when f(n1) = 1. This can only happen when each digit of n1 is 1, that is, n1 =
(10m − 1)/9 for some positive integer m. Now suppose f(f(n2)) = 1. Then f(n2) = (10m − 1)/9, so the
product of the digits of n2 must end in a 1 (that is, viewing the product modulo 10), thus n1 has no even
digits nor a digit 5. Thus, the only possible digits of n2 are 1, 3, 7, and 9, hence f(n2) = 3a7b for some
nonnegative integer powers a and b. Note that 320 ≡ 1 mod 100 and 74 ≡ 1 mod 100. One can verify that
3a7b 6≡ 11 mod 100 for any 0 ≤ a < 20 and 0 ≤ b < 4. Thus, it is not possible for any n2 to have f(n2) be a
repunit with all digits 1. In other words, the only numbers that iterate to 1 are repunits (10m − 1)/9.

Amazingly, this same idea works for 3, 7, and 9 as well.

Theorem 1. Suppose fk(n) = 1, 3, 7, or 9 for some iterate k. Then n has maximum persistence 1. More
precisely:

• Suppose n collapses to 1. Then n = (10m − 1)/9 for some positive integer m.

• Suppose n collapses to 3. Then n has a single digit 3 and the rest of the digits are 1.

• Suppose n collapses to 7. Then n has a single digit 7 and the rest of the digits are 1.

• Suppose n collapses to 9. Then n has either a single digit 9 or exactly two digits 3, and the rest of the
digits are 1.

Proof. Suppose there is a number n with persistence k ≥ 2 collapsing to 1, 3, 7, or 9. Let n2 = fk−2(n) and
n1 = fk−1(n). Since f(n1) = 1, 3, 7, or 9, then every digit of n1 must be 1, except for a possible single digit
of 3 or 7 or 9, or two digits equaling 3. In particular, the last digit of n1 cannot be even or 5. Since the last
digit of n1 is not even nor 5, n2 cannot have any even digit or a digit of 5. So the only possible digits of n2

are 1, 3, 7, or 9. Thus, f(n2) = n1 = 3a7b for some nonnegative integers a and b.
We look at 3a7b modulo 100. Note 3 is of order 20 modulo 100, and 7 is of order 4 modulo 100. One

can verify that for every choice of 0 ≤ a < 20 and 0 ≤ b < 4, the next to last digit (the tens digit) is always
even. Since every n1 has all odd digits, 3a7b can never equal n1. So it is impossible to find any n2 with
f(n2) = n1, proving our theorem.

This type of argument can never work if B + 1 is composite; if base B has B + 1 = d1 · d0, then
f2(d1 · B + d0) = f(d1 · d0) = f(B + 1) = 1. If B + 1 is prime, this type of argument still might fail, for
instance, in base 16, f2(37D) = f(111) = 1, while in base 18, f2(777) = f(111) = 1. But the same base 10
argument does work for bases 4, 6, and 12.

Theorem 2. Let the base B = 4. Suppose fk(n) = 1 or 3. Then n has maximum persistence 1.
Let the base B = 6. Suppose fk(n) = 1 or 5. Then n has maximum persistence 1.
Let the base B = 12. Suppose fk(n) = 1 or 5 or 7 or the digit 11. Then n has maximum persistence 1.

Proof. Consider base B = 4. Suppose there is a number n with persistence k ≥ 2 collapsing to 1 or 3. Let
n2 = fk−2(n) and n1 = fk−1(n). Since f(n1) = 1 or 3, then every digit of n1 must be 1, except for a possible
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single digit of 3. In particular, the last digit of n1 must be 1 or 3. Since the last digit of n1 is not 0 or 2,
n2 cannot have a 0 or 2 digit. So the only possible digits of n2 are 1 and 3, so f(n2) = 3a for some positive
integer a. Note that 34 ≡ 1 mod 42. Since, in base 4, 31 ≡ 03 mod 100, 32 ≡ 21 mod 100, 33 ≡ 23 mod 100
and 34 ≡ 01 mod 100, we see that the second digit (the ‘fours’ digit) is always even. But every n1 has all
odd digits, so 3a can never equal n1. Thus, it is impossible to find any n2 with f(n2) = n1, proving the base
4 case.

Similarly, consider base B = 6. Suppose there is a number n with persistence k ≥ 2 collapsing to 1 or 5.
Let n2 = fk−2(n) and n1 = fk−1(n). Since f(n1) = 1 or 5, then every digit of n1 must be 1, except for a
possible single digit of 5. In particular, the last digit of n1 must be 1 or 5. Since the last digit of n1 is not
0, 2, 3, or 4, n2 cannot have a 0, 2, 3, or 4 digit. So the only possible digits of n2 are 1 and 5, so f(n2) = 5a

for some positive integer a. Note that 56 ≡ 1 mod 62. In base 6, 51 ≡ 05 mod 100, 52 ≡ 41 mod 100,
53 ≡ 25 mod 100, 54 ≡ 21 mod 100, 55 ≡ 45 mod 100 and 56 ≡ 01 mod 100; we see that the second digit (the
‘sixes’ digit) is always even. Since every n1 has only digits 1 and 5, 5a can never equal n1. So it is impossible
to find any n2 with f(n2) = n1, proving the base 6 case.

Finally, consider base B = 12. Suppose there is a number n with persistence k ≥ 2 collapsing to 1, 5,
7, or the digit ‘11’. Let n2 = fk−2(n) and n1 = fk−1(n). Since f(n1) = 1, 5, 7, or the digit ‘11’, then
every digit of n1 must be 1, except for a possible single digit of 5 or 7 or ‘11’. In particular, the last digit
of n1 must be 1, 5, 7, or ‘11’. Since the last digit of n1 is not even or divisible by 3, n2 cannot have digit
which is even or divisible by 3. So the only possible digits of n2 are 1, 5, 7, or ‘11’,so f(n2) = 5a7b11c for
some nonnegative integers a, b, c (at least one exponent is positive). Since 5,7, and 11 have orders 12, 6,
and 12 modulo 122, respectively, we only need to check 5a7b11c modulo 122 for 0 ≤ a < 12, 0 ≤ b < 6, and
0 ≤ c < 12. One can verify that each 5a7b11c has an even digit in the second place (the ”tens” digit in
duodecimal). Since every n1 has only odd digits, 5a7b11c can never equal n1. So it is impossible to find any
n2 with f(n2) = n1, proving the base 12 case of the theorem.

3 Bounds on persistence of numbers collapsing to 2, 4, 5, 6, 8

We now return to base B = 10. In the previous section we dealt with the cases when fk(n) = 1, 3, 7 or 9.
We now find lower bounds on the persistence of the other nonzero decimal digits.

Theorem 3. Let n < 101000 be a positive integer.
If fk(n) = 2, the persistence k is at most 6; only n with f(n) = 2678 have persistence 6.
If fk(n) = 4, the persistence k is at most 5; only n with f(n) = 2233771 have persistence 5.
If fk(n) = 5, the persistence k is at most 5; only n with f(n) = 355172 or 325271 or 325273 have

persistence 5.
If fk(n) = 6, the persistence k is at most 8; only n with f(n) = 2632771 have persistence 8.
If fk(n) = 8, the persistence k is at most 6; only n with f(n) = 2203571 or 2393372 have persistence 6.

Proof. As before, we write f(n) in terms of the digits f(n) = 1a · 2b · 3c · 4d · 5e · 6f · 7g · 8h · 9i for some
nonnegative integers a, b, c, d, e, f , g, h, and i. We replace each 4 with two 2s, each 6 with a 3 and a 2, each
8 with three 2s, and each 9 with two 3s. Thus, f(n) = 2α · 3β · 5e · 7g where α = b + 2d + 3h and β = c + 2i.
If min(α, e) > 0 then the last digit of f(n) would be zero, so n would collapse to zero, a case we are not
considering in this paper. Thus, we only need to consider f(n) = 2α · 3β · 7g or f(n) = 3β · 5e · 7g. Since
we are assuming n has at most 1000 digits, we have dα/3e + dβ/2e + g ≤ 1000 and dβ/2e + e + g ≤ 1000.
Using Maple, we check the persistence for each f(n) = 2α · 3β · 7g or f(n) = 3β · 5e · 7g that collapse to either
2, 4, 5, 6, or 8, with the restrictions dα/3e + dβ/2e + g ≤ 1000 and dβ/2e + e + g ≤ 1000. We find that
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none have persistence greater than the listed maxima for each case, and that the maxima in this range are
reached only by the listed cases.

Based on similar calculations,we have these conjectural bounds on persistence: in base 4, the maximum
persistence of any number collapsing to 2 is 3; in base 6, the maximum persistence of a number collapsing
to the digit 2 or digit 4 is 5, to the digit 3 is 2; in base 12, the maximum persistence of a number collapsing
to digits 2 or 10 is 3, to digit 3 is 4, to digit 4 is 6, to digits 6 or 8 is 5, to digit 9 is 4.
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