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H_._._.m v.wus. is.a _.mwvo_.mm ok problem in _HW K. .Q:w. “Unsolved Problems in
ZEEUQ. ,:59.%: mﬁnnmﬂ. 42.5@ New M\oﬂw Gmﬁ_ (see Intreduction). ﬂﬁ main
" results'dre the oliowing: The equation p* —b” = ¢, where p is ptime, and 5> 1 and
"¢ are positive integers, has at most one solution {x, ¥) when' y is odd, except for five
specific: nwmn,a, i .wu&. at most. one ‘solution- when y is -even, The 'equation
pr—g™=p¥ —g", where p and g are primes, has no.solutions (n,m.N, M) unless:-
(pfg)={g/p)=1, except for four specific cases. The equation _ p*-q*l=c has.at:
most two solutions except for three specific cases. The me_mﬁo: a*+b¥=p, irona
a>1,b>1, (a, b)=1, and p is prime, has at most two solutions when p is odd and
at most one solution when p=2 except for two specific cases. © 1993 Academic

Press, Inc.

Hz,_,wouc.odoz

F mmoﬁoz Ue P mq om [5], ?orma QE SEBm. v

.,mcms mnmmu asks how many solutions {m, r) dees p” — g~ = N} wmﬁ moH.
vm_Eom p, q and- integer-h. At most one? Only finitely Bmwwe. .

. The question is a specific.case of the following ﬁHoEnE

.How Emuw mo::uomm AE 5 does -

P L - ? _la_|n S ey
E:a *.o_. H.EEmm D, q mna Enomﬂ c? Hﬁd take m, n ch o

‘26 mu:a:amw of the nutnber of solutions to’ m.b A: for a m:&n o_goam of
; “follows from a result of Pillai [91."

““There . are ' thrée  choices 'of (p, s e) ﬁm_ssm p> S which omow SoE

..ommosw thifee ‘solutions to Eq. (1) (3,2, 1); (5,2,3), (3,2, 5). Theorem 5

of ‘this’ paper ‘shows that-all: other choices’ of A g 3 yield at most two
solutions: In ﬁE&nEE. the choice p=F, g=2,¢=F.2 u:oEm mxmozw two
o:&onm when F'is a:Fermat prime-17 of greater.

Onm Crawford ‘has ‘Gonfirmed by computes -that; mmao m,oB trivial
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rearrangements, the only (p, Q. ¢) yielding two ‘or more solutions to Eq. (1)
with p™ and ¢"<2% are: (3,2,1), (5,2, 3), (3,2, 5), (13, 3, 10), (3, 2, 13),
(11,2,7) (5,3,2), (3,2, 7), :ﬁ 2, 15), (257, 2, 235), (65537, 2, 65535). We
comjecture that these-cleven (p, g, ¢) are the only (p, g, ¢) giving more than
one solution to Eq. (1), not counting the four trivial rearrangements
(3,2, uuw {5,2,123), (5, 3, 22), and (11, 2, 117). Zoﬁm that in none of Emmo
cases’'is ¢c=2" A>1. -
Pillai’s result 9] shows Emﬂ ﬁrm B:mzon

Im_\cnznf o .

where a>1, b>1, and ¢>0 are any integers, has only finitely many
solutions (x, y). When ¢ is sufficiently great with respect to a and 5, he
showed [10] there is at most one solution. LeVeque 87 and Cassels [1]
showed that, for c= 1, there is at most one solution to Eq.(2), except when

a=3 and b=2. For any ¢, if a is prime, Eq. (2) has at most one solution .

with y even and at most one solution with y odd, except for five specific
choices of (q, b, ¢) wwcr EaEEm ESQG two solutions (see Theorem 3 of
this paper). _

Piliai 91 also mmé 25 more mmnoum_ nomc,: that

ra*—sh?=¢ T 3)

.wmm only finitely many solutions. Styer [157] has shown that when ¢ and 5
are primes ‘and Eq. (3) holds, then, if a < Hw .wA 13, r g mo ,m.A mo ¢ < 1000,
we must have x, y< 18,

Many results .on .Eq. (2) have _ung OUSE& for specific (a, b, ¢},
particularly when (@, b)=(2,3) or (3,2). (An account of. such results,
as well ds.a clear ?.@maimc,ou of more general resuits, is ‘given in [12,
pp. 50-551.) Pillai [107] noted Herschfelds result [7] that. there exists
dy>0 such that |d| >d, implies 3* —2¥ =d has at most one solution, and
. conjectured [11] that this dy=13. Stroeker and Tijdeman [14], prove
Pillai’s conjecture using Baker’s method, noting that Pillai’s conjecture
does not yield to classical methods as do other specific cases handled by
Pillai. Pillai’s conjecture is also Eoﬁa as a specific case of Theorem 4,
_ooHozva of this paper. . ..

In addition., to treating the mcoé B:m:osm in o_.n_ﬁ. 8 Rmvga to
Edgar’s question, we handle the same question when 4 is a varjable: we
derive an casy,. Emosom_ method to obtain m: solutions (x, ¥z v to
a +vgin s&ﬂm ¢ is odd: or nacm_ to 2, HEEHm there are at most two
moﬂmconm if ¢ is prime and at,most one moE:on when ¢ =2, except for two
mvao_mo cases. Nagell - 1197, gmwoém_a L17, :w“_ and, oﬁwﬁm have. found
solutions for specific a, b, c. Whether or.not ¢ is prime, we can obtain
bounds on z which. depend only. on a m:m & and which are, in general, not

pr—b=caNpat+bl =" 55

axommm:a_w rﬁmﬂmoBm:Eomnacm_EmEo Emrmm_n N moEmE, oooﬁn_nm Em
given case (see’ HrmonE 2 of this paper). : :

RESULTS

We s;: =mma a maé elementary _mEBmﬁm ‘which mmﬂmdrmw @Homoasoa 90
numbers b; defined as follows: .
Let a=a,+b; /\m where a,, b,, d are non-zero Eﬂmmﬁm T:_ VH.H_. d

'square-ftee, (N(a),2d)=1, and -let a'=q,+5; /\m for every i Note
_E:.FVI 1, a;#0, b;#0.

rmzz> 1. _a_ﬁuvwlw

Hwo ?.ooﬁ, follows from. Emvaoso_u Om the oxﬁmam_on of (a;+ 3 »\m _\»

hmv?? 2. Qﬁ \m is 3& FE&.N c&:m c\ i such that w_.w: %R: %_@ E\%:mm
w_h

Proof. glb,=a.b,_ +..9n$|w E:u:om m__w —_&s SO Em: s=2k is the
lowest value of s>k such that g|b,, s=3k is the lowest value of s> 2k
such that g{b,, etc.

LEMMA 3. Ift>0, orif t=0 and pid, and k is the lowest value of i such
that p'g|b;; and p'| by, then hw is the lowest value. QJ such that p**'g|b,.
Unless Hlo and p=13|d, ﬁht__m_

"Proof. By’ Lemina 2, it is ‘enough to exatnine “the oﬁumnﬂos of
(ap+ b /\m % to see that p is the lowest value of s/k such that p'tglb,,
and, Ew_ms =1, ﬁwi__w% Iff=0 mbaﬁ_& plag; ?Eoo Qﬁ& d)=1) so
that E_w i E.:omm p= m

‘LEMMA’ 4. hmﬁ_&aan 1—3 also nﬁﬁ@ to numbers b; mm.\, ned' as follows:

~Let r>1 be any odd number, and let-ad be some %annc:g:c: af T.u into
conjugate ideals in Q(/=d), where d is.squareifree, 0 <d#1 or 3,
(—djry=1, (r,d}=1, and there is no't& Z such that t>1 and [11]a. ..m.mh z

be the lowest ::3@%. such that o* = _”R”_ where o= a +_w \/ —d for some

AQS@ EN and’ Eﬁmg 1n +®,\ d, ni_”n.m.@,\ -d],. \,9,. every i

such that N_h ;&R zfi HSEH&, a‘# _“a+ b.f—d] \E. E\c\, integers a, b.}..

The Lemmata 1-3 o_mm_.@ apply to ‘w=a,+b,/—d, since we have
a,#0, b,#0, d#£0,d square-free, (a.; ) =1, Qﬁo&. 2d) = 1. .E._n ou@
&mnaogn is Emﬁ w@_.m the- msdmnzcﬁm N are m: EE:ﬁ_mm o~. z. .

hmZz; m hm.iia_ﬁ Tw &% %.ue\ t0 x:z&m& b &mbam& as .\.Qacxa.
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For d="7 mod 8, let p;p, be the factorization of [2] into distinct prime

ideals in O(/—d). Eet z be the lowest number such that p3 is principal.
Write

P2= :n = & H_ T +2, g for every i such that z|i.

The proofs of Lemmata 1-3 remain mmmmsmm:w the same for b, thus
defined, although for the new proof of Lemmal we must note that
by|b;<>b,|2"*~3p,; and for Lemma3 we note that p‘*lg|h <
ﬁ~+HW_Mw\WIm@m. .

THEOREM 1. Let R be a set of positive rational primes, let S be the set
of all numbers greater than one all of whose prime divisors are in R, and let
T be the set of all numbers in S divisible by every prime in R. Let P and Q
be relatively prime sguare-free integers such that PQeT. Take A€ S, Be S,
ABeT, (4, B)=1, (AB/P)"?eZ. Then, for every prime r¢ R, there is at
most one such pair of numbers A, B such that

A+B=r*, @

:Smwm X is any positive Enmmmﬁ except \91 the following cases allowing
exactly :ﬁ.mm two, and two %E:Eﬁ am%mn:ema\.

() 34+5=2%  3+5=2% 3+5=2, . . (3
() 3+13=2%  3°413=2%, _ (6)

RS AZ L D L
43 . _
@) 2 (>5=)+ ()=t
-1 3+l IV
AN+1 —
o LY, v
Further, if Ce T, (C/PY?cZ, and C+1=r">3* for some integer y, then
(4) has a solution with A; B.defined as above if and only if 2| y, in which case

(7

cx=I4l A=l B=2'F1o when r=2, p>4, (8)
and “ o :
Ly .|__..HH._. . F.xn.HH o p
., RIN A= 5 B= 7 when «Vm. . GV

@d&w >mm=Bo T: _pmm a mo_csou (with \m B wamﬁ_oﬂna as’in the
formulation..of Theorem 1)..L.et P P,=P P; <Py, let 0,Q,=0, and

p*—bhr= C’AND a* +b*= 157

assume, without loss of generality, P, Q| 4. Let e=1 or: 0 according as
r=2 or not. Then (4) is equivalent to the equations in ideals in Q(./—P)

T_a\gf E@ﬁ?d

x—2e

- Q»ﬂmﬁﬁ

Mm

and.

Tg E\mm NTNEEES wlﬁxlma
ﬁwﬁjf
where a} =[P,] and ﬁawﬂn_w.”_ Note r=2=-P=7 mod8. Let p’=
L(a,+b,/—P/2°], a,, b, Z, where z is the lowest number for which such
an equation is ﬁOmE_u_a. 45.:@ a;+b,/—P2°=((a,+ b,/ — P)/2°)" for
every i such that z|i If P=1, P,=P,, so we can assume without loss
of generality 2| B, and choose 32.& )={(a,, b;) such that 2|b,=b,. If
P=3, oroomn (a,, b, VIQ:L: such that ¢,€Z, b,eZ, noting that if
{a,+by/~3Ye=(c+d./— é:wwm ceZ, de?, and ¢ is a unit, then
&= +1 since m?:l? For m: P (noting the restriction above when
P ==1), the choice of |a,|, [b,| is unique; the Emsm will not matter in what
follows,

Let j be the lowest number such that N_umm _w Jl 2{x—2e), by
Lemma?2. j|x—2e=>ap ~[1]=>P =1, in which case, by Lemma l,
j|x—2e=>2'"°Q| (B/P)"> = 4 =1, which was excluded. So j | x — 2e. Thus
all solutions to (4} have x =/#/2 +2e, where 2} ¢. :

Choose J such that jiJ|2(x — 2e). ,m 12{(x — 2e)/J = w ?Eoﬂ
2 f2(x—2e)jj); - T _ ,

Tiﬁéim\y% ,\IJ
. e A

Ji2 o ((w—1)2)T
r r

=ap,

- TJ:._,.G/\. Ihdﬁ_:,__\!:bz.,_..FQL_E.:< IJ : ﬁs

- 2¢ 2e
for some u, v such that 2uelZ, ve NW.

EULRMTR%|?M<mm+m_-%_§_,\ ; ﬁwuﬁnlw?\_dv

2% 2¢

so r>2=ueZ, veZ (If P=3, we can take u and v to be integers.)
J 11 2(x —2e); so:Puve T. (Py, u)=(P;,v)=1:since(P,a;)=1. By (10),
noting 2 ~°Q1 by~ 1yzy-When w> 1, and recalling 0, | 4 and O, | B, we get
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Oy Qylv. (Qs, uy= (@4, v)=1.S0 P,u®+ P,v* =r"?*2 ig a-solution to
(4) in which the set of primes dividing P u? is the set of primes dividing
A (similarly for P,v? B). Since we can take J = Lq we mmﬂ ail solutions to (4)
are of form

k&~+wquﬂkhxw+wm"m§d_u AHHV

where 2 } ¢ and the set of primes dividing A, is the same regardless of the
value of ¢ (assuming, without loss of generality, (4,,4,)>1 for any
1 # ;). The lowest solution, if it exists, is at £=1.

Suppose there is a solution to {11} with #> 1. Then there is some prime
me R such that m?|(4,B,/A,B,)=(b,/b;)* where A + B, =r"*%3* By
Lemmata2 and 3, |z Since we can take J=jm in (10), we can take ¢ = m
as a solution to ﬁ: with ¢> 1, Since 2 ! (2{x—2e)/j) for any x mmcm@_nm
(4), m=>2. By Lemma3, if m" |5, and either m>3 or n>0, then

m"* | b;,. Using the notation of (11}, we get (A,,, B,)={(m>4,, B;) or
Er m®B,) according as m| A4, or m|B,. Thus

(Ay+ B)ym?=(r"2"2)m* > A, + B, = r/+2%, (12)

mE U=y = =2, m<5, R Am 5), and (4) has three solutions:
(4, B, x)= (3, 5, uv (3% 5 5), (3,55, 7). .H.wﬁ.m are no further solutions since
pr=[(1+/—15)217 = [(a; + b; /- 15)12]; hig ¢S, wwomm bso ¢ S.
208 P=1, 3, or 5 is impossible mod 8 when r=2.

f (ryR)# (2 {3,5}), we must have m=3, 3}b n FH.HszF.H
F.Gmwlwwwv\%. Let (X, bvnﬁr\m ml or (By/3,4,) according as
314, or 3|B,. +4¢.39=1= g2_p*(P/3) = ((3K=— D)/2)* — 41 KD,
+16°-3%'= (9K — DNK~D). 9K—D=K—Dmod8, OK— D= +4°

K—D=+4°.3""1 |K—D|>|9K—D|, K<D, 8K=4°(3""141), K=

45(3¥=1 +1)/8 where + is — if e=0, buaszﬁ.T:\m where + is — if
e=0. Using the notation of (11), A4;B;= w\ﬁfnlmmz@ Pl4t—e=
3%A4, By, 3N 1K= A5 o1 By 1P ¥ e =4r af:\u where + is — if e=0.
Ife=0,2} N and we have (7). A third solution in this case Snz:nm 3% | 2x,
(As, Bs)=(3%4;, B;) or (A3, 3°B;), which is impossible as was (12) for
r>2. If e=1, we have 2/2*1=3¥1 (—1)%, where g=1 or 0. It is a
familiar elementary result (see [13]) that we must have (j/2+ 1, N, g)=
(1, 1,1); (2,1,0), or (3,2,1). But x; =j/24+223: S0 3K, D, x,)=(3, 5, 3)
or Hm, 13,4). Gu 5, 3) was handled above. (3, 13, 4} has no third solution
since 13> 5 and 3%|2x —4 is impossible as was (12) for D> 5. (Proof of
the non-existence of-third solutions is- also omm:w obtained by elementary
congruence methods: see, for example, [6, pp. 200-2017.}

‘Finally, suppose CeT, (C/P)*eZ, and C+1=r" for some ¥, EE

pF—b'=caNDa*+b'=c" 159

suppose also Em: (4) has .a solution.. Let H+QI1§+¥ r If

2H2(y—2e)j)=

Nm

ﬁHAQ\ES( hd pi2p (e 127

Mn%+@%<lma:e;:b:%@:s;%:(Iw.
2 2=

Treating this equation in the same manner as (10), we. get 4, =1,

contradiction. So 2|w, 2| y. Conversely, it is elementary that m_ y ensures

that T: has the morﬁon (8) or (9). .

THEOREM 2. q A, B, P, O, R, S, T are defined as in the formulation Q\
Theorem 1, and E%mx r=2 or r is any odd integer (not necessarily prime),
then, if (4) has a solution and is not one of the m@:n:eza_ in (5) or (6), we

must have
w=+ﬁ |.m |.~U
h(—P A Alv =|h|vvv w3
7 =P %) (13)

where s=2 or O according as r=2 or not, u=1 or 0 according as
3<P=3mod8 or not, v=1 or 0 according am (4) is the exceptional case
(7) or not, E P) is the lowest h such that a" is E\Sn%& for every ideal a
in Q/—P), ay,wsa,)=L-C-M-(ay, .., aL“ g, “oqy is the hzﬁm
factorization of Q, and (a/q) is mmm \niuba_‘ hmw.mx&wm &\E_wom ::Nm% g=2,1in
which case (a/q)=0. _

{(x—s)

Proof. msﬁmxumm in the UHooue E, Hrao_.oa H we mw_oé F 8 be an oan_
composite prime to every prime in R. Then, to each solution of (4) there
corresponds a specific factorization of [r] into conjugate ideals p,$,. The
lowest solution corresponding to any such factorization has x =j/2, where
j 1s defined as in the proof of Theorem 1 for p,.

. Thus, from the proof of ﬁ.ﬁoRB_ uoznm x—§=j/2 unless Ts is one
of (5), (6), (7) and taking QMAQNA - < G,y WE get .

o (o (el ()

where G=1 -or 0 according as mﬁu or not, and H=1 or 0 according as
g, =2 or not. But we-can take G=H =0, noting the following; ” :

If2fPand r>2, h:u“ﬁ where b, is defined as in the proof of Theerem- _
and z is defined as in Lemma 4. If M:ﬁv and 2|z, then 2|5,. And if 2 _ Pand
2}z z|h(—P)/2 when P>2, and n>0 when' P=2.

(x—s)|-
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Theorems 1 and 2 supply an easy, usable méthod to find all (x, y, 2)
giving solutions to any equation a* + b* = ¢* with (a, b, ¢) given and ¢ odd
or equal to 2. (Note here z is any positive integer, not the z of Lemma 4.)
If ¢ is unknown instead of given, Theorem 2 provides a finite list of possible
z. For cach such z> 1, it is often possible to compute all the solutions
(x, ¥, ¢) by well-known elementary or algebraic methods. For example,
after Theorem 2, conventional methods suffice to show there is no x>=1,
y=1 such that 2*43” is. a perfect power other than 5% (See also
Theorem 6.) .

We can &Hmnzw derive ?oE Theorem 2 the following

COROLLARY T0 THEOREM 2. Let R be a finite set of rational primes and
let S be the set of all rational integers divisible by no primes other than those
in R.

H\\_m.w BeS, (4, B)=1, and r is odd or equal to 2, then

A+ B=r"implies x is in M, (14)

where M is a finite set of integers less than M, E»mwm M, is an effectively
computable bound dependent only on R.

(Note: For specific R, after the methods of Theorem 2 have been used to
find all possible values x can take in Eq. (14}, elementary methods often
suffice to show Eq. (14) implies x =1, regardless of the vaiue of r, except
for a finite list of specific cases.)

The corollary follows directly from Theorem 2, ex¢ept that to handle the
case 4 =1 or B=1 we peed to double the bound in (13) and note that, if
T is the set of numbers divisible by every prime in a given finite set of
primes and by no other primes, there are at most two solutions' to
A+ 1=r*for AecT and r fixed, and, if two solutions A\__: x;) and (A4,, x;)
exist, x; =1 and x,=2.

From Theorem |- we can derive mm,ﬁ.m_ theorems H.omm.:sm to mamm_.m
@zmmnoz

THEOREM 3. Let b>1-and ¢ be m&&.:.em rational integers and let p be a
_positive rational prime. Then the equation
—br=c . (15)

has at most one solution (x, ¥}, where x is M,Ew positive rational integer and
u\ is any positive rational odd integer, except for the following five cases:

“«‘f L m+H|m
m+u %

241=3 (16)
Pi5=2 C(17)

—b"=1¢ AND m%._.mi.nmN 161
3413=2% 3F413=2° . - (18)
543=2%,  $43=2 (19)
3+10=13, 37 410=13% . o (20)

When y is any positive even integer, there is at-most one solution to Fq. (15).

Proof. " If (p, b)>1, Eq. (15) has at most one soluticn, so we assume
(p, by=1. It is shown in [1] by elementary methods that Eq. (15) has at
most one solution when ¢=1 unless p=13, b =2, in which case, as shown
by elementary methods in Tmm there are exactly two solutions, given by
Eqgs. (16).

‘Thus, aftér ‘Theorem 1, it is enough to point out Emﬁ Egs. (20} give
the only instance of the exceptional case of Theorem1 for which
B¥1-1)8=1

Note that Theorem 3 shows that Edgar’s equation
Eux _ Q.: —_ M.m ANU—V
has at most two solutions (m, n,) EE Qxf ny). 2fny —n,.

We can mﬂnsmﬁrg Theorem 3 somewhat with two mna:uos& anuﬂum

THEOREM 4, If p>0 is prime and b>0 is any integer, p™ — b=
p2=— b >0 has no solutions xy, y|, Xy, ¥, (where x, < x,, y;>0) unless

ANV Turwuun: ‘ﬁ_u.ﬁuu.ﬁmv”
(3,2,1,1,2,3), (2,3,3,1,53),, (23,4185),
or (2,53,1,7,3) . i o - (22)

or

{b) p>2andord,b is odd, where ord, b is the least t such that b'= 1
mod p.

Proof. As in Theorem 3, we can take b>1 m:a @ p)=1LIp>2 and
ord, b is even, then o

P =)= E_@sél:uvm_E Y1

so that Theorem 3 mﬁmonm -to wwoé Emﬂ A D,bx, v, R? EVI
(3,2,1,1,2;3)

Hp=2 let2']|b—1. Then 2} y,— y,; would :E&w 2| Bt —1, s0 :Hmﬁ
x; =t 2'=2">p">2" contradiction. So 2|y, —y;, and Theorem 3
suffices to show that (p, b, xy; ¥y, Xa; ‘Ev is one-of the three REEEH_W
cases listed in (22) above:
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.- Noting (b/p)=—1=2|ord, b for odd p, and _mﬁEm (b/2)=1 for any b,
we get

CoroLLARY TO THEOREM 4.  Let p and q be positive primes, p < g, and let
n, m, N, M be positive integers.
Then, unless (p/q)=(q/p)=1, there are no solutions o the equation

pr—q"=p" —q" (23)

except when {(p.q,n, i“ N, MY} or {q, p,m,n, M, N) is one of the solutions
listed in (22) above. (Note that here p" — g™ may be less than zero.)

Proof. After Theorem4, it is enough to note that, _ﬁ&mb p>2,
(p/9)#(a/p)=>p=q=3 mod 4=2[(N—n)—(M—m)=2|N—n, 2| M—m,
so that Eq. (23) has fio solutions in this case, by Theorem 3. .

Tarorem 5. The equation
™ =g’ =c, (24)

where p and g are distinct positive primes and ¢ is any positive integer, has
at most three solutions x, y, where x and y are positive ERN&E. There are
exactly three specific choices of ( P4 ¢) (taking p < q) mEEw three solutions:
(2,3, 1), (2,3,5), (2,5, 3)

Proof. Suppose for some (p, g, ¢) the equations

Pe=gq" _ - (25)
and V
g +c=p (26)

both have solutions .? 1»my)and (hy, k), respectively. Then p (p® "+ 1) =
g'(g" '+ 1) where r=min(n,, h,), R=max(n,, h;), t=min(m,, k), T=
max(m,, k), so that, if g > 2, the congruence

*= ~1modg : 2N

has a solution x >0, ‘mnau_ if p=>2, the congruence. .
g’ = —1modp a . (28)

has a solution y > 0. Suppose also that (25) has a second solution (n,, #,)
so that p"(pm " —1)=g"(g™ "™ —1), assuming,. without loss of
generality, n, <#n,. If (g, p, m,, n,, m,, n,) is one of the solutions listed in
(22), 2|n,—ny. If (g, p, my, By, My, 1,) is not listed in (22), then ¢> 2, so
that 2|#, —n; since (27) has a solution. Similarly, the existence of a second
solution to (26), QM.#NV »say, implies N_N«m \n_ ?&g (25) also gives a
solution).
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Now, if (24) has three or more solutions, then either (25) and (26) both
have solutions, or one of (25) and (26). has three solutions. In either case,
cither {25) has two solutions such that 2| s, —nr; or (26) has two soluticns
such that 2|k, —k,, so that two of the three (or more) solutions to (24)
must be among the five specific cases of Theorem 3 ((16) through (20)).

Let p* — g* = ¢ now represent one of the five specific cases of Theorem 3,
with x;, y, and x,, y, representing the two solutions given by Theorem 3
to this specific case. Let “4”-be the hypothesis that “there exists X3, ys
(distinct from (x,, y,) and (x,, v;)) such that p®—g4**=¢" and 'let “B”
be the hypothesis that “p*—g¥ = --¢ also has a solution.” Note .that “4”
implies 2| y5. Note also that “B” can hold for at most one pair x,, y,, since
p*—¢q”=—c can have no second solution x,, y, with 2{x,=x,; (by
Theorem 3) or with 2} x,—x, (by the first paragraph of this Eoo& “B”
precludes “A” (again by the paragraph just cited).

Thus, to prove Theorem 3, it is enough to check each of the mé mmoemn
cases of Theorem 3 and either find a mo_:aon satisfying :w ” or prove there
is no solution mmﬁm@_bm “B” or “A.”

The specific cases given by (16), (17), mca (19) have solutions mmsm@_um
“B” (3-22=—1, 2°-3%=—5 2—5=—3), so that each of these cases
gives exactly three solutions to (24).

Equation {18) aliows no solution satisfying “B” (since 3" — E =—2o0r4
mod 8, and 44+ 13=17) or “4” (by Theorem 4). Equation (20) allows no
solution satisfying “B” ?ES 13+ 10 =2 mod wv or ..Ls ?ES 3"+ 10 £
13" mod 8§ n.m_i .

Finally, we prove

ﬂ,mmowmz 6. Q aandb are w&a:cmc\ @Eﬁm Emmwma, greater than one, ES.
ifpis EESN then the equation
a*+b¥=p* o © (29
has at ‘most two solutions ir positive -integers (x, y, z) when p+2, and at
most one solution (x, y,z} when p=2, except for two cases (taking
a<b):(a b, p)=(3,5,2), which hus exactly three solutions, and (a, b, EI
(3, 13, 2), which has exactly two solutions.

Proof. We will use .Em wo__oﬁEm
LeMMA 6. Equation (29) \Ew at most one solution when the parities ,c\. x

and y are ﬁwm&%ﬁ:m& except \E, three choices Q\ (a, _w p) (taking aAS
(3,52), 3, 13,2), (3, 10, Huv

- Lemma 6 follows &Hon:w fromi Theorem 1, noting ‘that (a, b, .SI
(3, 10 13) is the only instance of (7) for which Amz 1 _1)/8=1, s
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" Consider first'the case p = 2. Taking congruences mod 8, we see that mov
has no solutions except in the following cases:

(i) asb=7 .E.oa 8, in which case 2} x~y.

(ii) One of a,b (saya) is congruent +3mod8 while the other
?8\ b) is congruent 7 an 8, in which case u_& and 2} y.

(i) One of a, & Ammw a)is noszoE 1 an 8, while the omﬂnn (say b)
is congruent 7 mod 8, in which case 2:} y.

(iv) a=—-b=+3 an 8, in which case 2 } x and M:\

By Lemma 6, cases (i) and ﬁi have-at Bomw. one onmon (x, ¥, 2)
unless (a, 5)=(3, 5) or (3,13), in which cases- .&E.m are three and two
solutions, respectively, by Theorem 1.

For case (i), let 2°|a+1 and 2°|b+ 1. 27> 1+b, s0o z>¢ If 2}y,
b’=2"—1mod2*, s0 a"=2'4+1mod 2°* . If 2|x, 2°*'|a"— 1. 802} y
implies s< . Similarly, 2} x Eaﬁ:mm t<s. Thus case (i) has at most one
solution, by Lemma 6.

For case (iii), let 2°|la—1 and 2° __.w+~ N:\, so (as in the above)

a*=2"+1mod 2+ st Ifs=1, 2} x. If s< ¢, 2|x. Thus the parity of x,
as well as that of y, is Emamﬁgms&, and there is at most one solution, by
Lemma 6.

Now consider the case p>2. Define ord, r to be the Hammﬁ n such that

”=1mod p. It is elementary that 2|ord, r if and only if there is an m such
that "= —1 modp. Also easily a«:ﬁ& is the resuit that ord,s”
ord,s/(ord, s, n).

rmﬁ 2*|ord, a and 2°|ord, b, taking u<v. cuonvzlouvw*oa_umk
(for any x)=(~a%)"% = —(a*)"%*'= —1 mod p=2]ord,—a*. So if
v=0 and there exist x, y such that b= ~g* mod p, _&mn N_oa b=
ord, —a*(ord, b, y), contradiction.

mo v>0, and there is an s such that = —1 mod p. If —a*=5” mod F

a*=b"""mod p. If 2'| (x, ord,, a), then 2*~"{ord,, a/(ord,, a, Hv ord, @*
ord, b/{ord, b, y + 5); 50 N__;i;:oa b, %+,: :

eV: implies 2|y -5, so the parity of 'y is predetermined when v > u.
v=u implies y + 5 is odd or even according as =0 or >0, and 2| ord, a
if v=u, so the parity of x determines the parity of y when v=u. In 232
case, (29) has at most two solutions, by Lemma 6, unless (g, b, EI
(3, 10, 13). . , _ ,

If (a,b, p)=1(3,10,13); v=1>u=0, s0 2| y+s=y+3, 2/ y. If 2)x
(%, p,z)=(1, 1, Iy or (7,1, 3), by Theorem 1. If 2| x, 2|z (using mod 10),
1372 - 3*2 = N._ where t=1 or y—1. Using mod 3, we get 2|z Using
mod 4, we get 2| (x/2). By Lemma 6, the only selution to-13%2 — wa\m 2!
is t=2, x=4, z=2, which fails to satisfy (29). :

[
|
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Note Theorem 6 shows that there are at most two solutions to Eg. (21)
even if % is unknown instead of given.
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