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For a given prime value of b and some small prime p (or small prime power),

we will consider all solutions (x1, y1, x2, y2, z2) to 2x1 + by1 ≡ c mod p and 2x2 +
by2 ≡ cz2 mod p. Note that the exponents are defined modulo p − 1.

When b ≡ 13 mod 24 and c ≡ 5 mod 24, we must have x1 = 2. So we have
x1 = 2, 2 | y1, 2 | x2, 2 - y2, 2 - z2, and z2 divides the class number of Q(−b).

For a given b ≡ 13 mod 24 we find all z2 > 1 with z2 odd and dividing the
class number. Fix b and z2. For a given prime p, we consider each y1 mod p− 1
with y1 even. Define c ≡ 22 + by1 mod p; for each value of x2 even and y2 odd
modulo p − 1, we see if 2x2 + by2 ≡ cz2 mod p. If there is a solution, we add
(y1, x2, y2) to a list of all possible solutions modulo this prime p.

We now consider another small prime p2 and look for solutions to 2x1 +
by1 ≡ c mod p2 and 2x2 + by2 ≡ cz2 mod p2 which are consistent with a solution
(y1,0, x2,0, y2,0) already found modulo p. Specifically, let m = gcd(p− 1, p2 − 1).
For each solution (y1,0, x2,0, y2,0) on the list modulo p, we check c ≡ 22 +
by1 mod p2 and 2x2 + by2 ≡ cz2 mod p2 for values of (y1, x2, y2) for which y1 ≡
y1,0 mod m, x2 ≡ x2,0 mod m, and y2 ≡ y2,0 mod m. For instance, if p = 5 and
p2 = 13, we only need to check 33 tuples (y1, x2, y2) modulo 13 rather than 63

possible tuples. If we are fortunate, there are no solutions modulo 13 that are
consistent with a solution modulo 5, in which case this choice of b and z2 cannot
have any solutions.

Now we strategically choose a prime p3. For instance, if p = 5, p2 = 13, and
p3 = 37, then a solution (y1, x2, y2) mod 37 will have y1 ≡ y1,0 mod 12, etc., so
we only need to check 33 new tuples modulo 37. Similarly, if we next consider
p4 = 73 we only need to check 23 tuples to find solutions modulo 73 that are
consistent with the previous solutions modulo 37.

In this way, we can efficiently check tuples (y1, x2, y2). Often, checking
consistency of solutions for only a few primes, we find that a given b, z2 has
no solutions. A few values of b needed multiple primes or prime powers to
eliminate.

For b ≡ 13 mod 24 and c ≡ 17 mod 24, we must have x2 = 2. The procedure
is similar except that we now consider tuples (x1, y1, y2).

For b ≡ 1 mod 24, we do not have specific values available for x1 and x2

but the same essential algorithm can be used for tuples (x1, y1, x2, y2) although
there are now far more cases to test.

In practice, we first used Maple R© to get all consistent solutions modulo 5, 7,
9, and 13 for all possible b mod 24 · 5 · 7 · 3 · 13 and z2 mod 12, then used Sage R©

(in which we could access the Pari R© command for class number) to check all
relevant primes b and z2 > 1 odd and dividing the class number of Q(−b) for
consistency of solution modulo primes and prime powers. We use primes or
prime powers for which φ(p) has all its prime factors in the set {2, 3, 5, 7} (in
fact no prime with 7 | φ(p) was actually required). The actual primes we used
increased somewhat when we found a value of b not eliminated by the then
current set of primes, but eventually these were the primes or prime powers
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used in this order:
37, 73, 109, 163, 243, 81, 181, 271, 19, 27, 61, 31, 241, 97, 193, 257, 17, 41,

25, 101, 125, 151, 11, 211, 71, 29, 43, 49, 127.
In fact, no value of b required any of the values from 25 onwards; presumably

with more care even fewer values would be required.
Since we used these primes in our program, we need to verify that these

primes do not lead to solutions. For primes b ≡ 13 mod 24 or b ≡ 1 mod 24
with b ≤ 271, only 61, 109, 157, 181, 229,and 241 have an odd factor in the
class number. The cases b = 61, 109, 181, 229, and 241 are eliminated by
consideration modulo 5. The case b = 157 is eliminated by consideration modulo
13 and 5.

2


