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ABSTRACT

This thesis generalizes work of Stark and Patterson-Gold-
feld to complex quadratic fields of class number greater thah one,
We first define a vector Hecke operator which has a classical-
looking multiplicative relation, W& then define vector forms on the
quaternionic upper half:space, and examine their Fourier expan-
sions and the efiect of the_‘,_Hécké operators on these coefficients,
Then we examine eigenforms of the Hecke operators, and Dirichlet
‘series formed out of these vector forms., One obtains both Euler
products and functional equations for the Dirichlet series. Finally,
we define quaternionic Eisenstein series and study their Fourier
expansions and Dirichlet series. We obtain results that are
- remarkably close to the classical analogs.
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1. Introduction

From the time of Gauss aud Ramanujan, people have been
interested in the coefficients of modular forms. One of the most
useful tools used to study these coefficients is the Hecke algebra.
Hecke's theory enables oné to see the connections between the
modular forms and the associated Dirichlet series,

The classical modular forms were quickly generalized to
Hilbert modular forms, defined over totally real fields, Whenever
the class number of the field was greater than one, however,
people found obstacles to extending Hecke theory fo Hilbert modu-
lar forms, Oskar Hermann [5] finally overcame these difficulties
by introéuc‘:ing tne idea of a vector of modular forms, each compo-
nent of thg vector form corresponding to an ideal class of the field,
He uses ideal numbers to essentially introduce a principal genera-
tor for each ideal. Eichler [1] has defined vector forms {vithout
using ideal numbers,. but only by replacing the ideal nurmnbers by
complicated conditions on the ideals invol.ved.

Ideal numbers aré very appealing; essentially their origins
go back to Kummer, Hecke [4] developed them fully in 1920 in
order to replace ideals by specific_' elements, Ideal numbers be-

have like algebraic integers except for an important restriction
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on addition. One can c'mly add ideal numbers within a given class,
and this forces one to consider classes of matrices and classes of
forms. This is why Hermann introduces vector forms and vector
Hecke operators.

Hilbert modular forms are only defined over totally real
fields. Recently, several people have considered the complex
field analogs for modular forms. One introduces the quaternionic
upper half space which supports an action by SL(2, C), " One also
introduces representations of the quaternions in order to guarantee
the needed tra,nsformaﬁon properties. For fields of class numbexr
one, Pa:tterson-Goldfeld [8] have de;reloped Fisenstein series de-
fined on tI;é quaternionic upper haif space, Stark [10] has eﬁended
Hecke operators to the complex case if the field has class number
one, |

This thesis extends the work of Patterson-Goldfeld and of
Stark to complex quadratic fields of class number greater than
one, The concepts used para.llei those of Hermann, so we also
introduce vector forms and vector Hecke operators. Inthe com-
plex case, however, even when the class number is one, the
orms are vectors, so we williac’cu;ally need to consider vectors of

vectors, which makes the notation slightly awkward, Nevertheless,
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the basic results para,liel the classical cases. In Chapter II we
rintroduce ideal numbers and develop the needed properties, One
can then develop the Hecke operators, which look remarkably sim-
ila.;' to the classical case, Chapter III begins with a short discus-
sion of the quaternionic upper half space and of quaternionic repre-
sentations, We now have all of the preliminaries,

Now one can develop the theorjr of modular forms. As
mentioned before, we acfuallf ha,V:fe a vector of forms, one compo-
neﬁt for each id¢a1 class, These components in turn are vectors,.
each a modular form with respect to a fixed class of matrix opera-
tors., One can introduce Fourier exﬁansions in a very general
setfing - til.e example of .the Eisenstéin series in Chapter 1V shows
the reasonableness of our definition, After suitably renormalizing
the Hecke operators, one considers simultaneous eigenforms and
finds analogs to many of the classical results. For instance, the
Fourier coefficients corresppnd closely to the eigenvalues of the
Hecke operators. They are not equal, howe{rfalr, which would be
impossible since fbe Fourier coefficients actually are a vector
the.nselves, while the eigenvalues are scalars. Nevertheless, the
.;orrespondence is very close, and one can show that the multi-

plicativity of the coefficients is related to the vector form being an
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eigenform for the Hecke operators.

Dirichlet series are found via two techniques, The Mellin -
transfofm defines a Dirichlet series which has a functional equa-
t_ion. The eigenvalues of the Hecke operators define another
Dirichlet series which has an Euler product. These Dirichlet
series are not the same, however, since the Fourier coefficients
are not exactly equal to the eigenvalues. One suitably twists the
series, therefore, to create a new Dirichlet series which has both
an Euler product and a functionalbequation.

After wrestling with the complications of vectors of forms

one could wish that the principal com-

and vector Hecke operators,

ponent ;o"rresponding to the principal ideal class might contain
enough information to reconstruct the entire form., If so, then
one would be able to eliminate ideal numbers and the complicated
vectors 6f vectors, Tihe principal theorem in Chapter III Section 8
~ shows that one's wish can be fulfilled. If a function f. is an éigen-
form for "pfincipal” Hecke éperators and is modular with respect
to the "principal" matricés, then one can find a vector eigenform
which has f as ité principal component,

The final chapter illustrates the results of Chapter III by

defining quaternionic Eisenstein series. We explicitly find the
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Fourier coefficients and the Hecke eigenvalues, which are remark-
ably similar to the results one gets in the classical cases., We
explicitly evaluate the matrix integral which appears in the Fouri-
er expansion, and show that one gets a matrix with sums of Bessel
functions, This is slightly surprising, but a consideraﬁion of the
differential equations satisfied by the integrals confirms that one
gets Bessel functions, In case the weight is one, a quaternjon-
valued Eisenstein series can be defined for which an interesting
differential equation can be foﬁnd, but for other weights this equa-
. tion does not seem to have an obvious analogy. Fiﬁally, we de-
velop an example of Eisenstein series over K =Q (/-23).

Inrcronclusion, the complications of class number greater
than one are relatively minor. The broad outlines are precisely
those found in the classical analogs. Furthermore, since the
principal components determine the entire form, one need not
even consider ideal nﬁmbers nor a vector of vectors, with a sepa-

rate component for each ideal class,
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II,1 Ideal Numbers

Ideal numbers are an appealing concept, underlying the
original ideas of Kummer. Hecke [ 4] developed a full theory of
ideal numbers in 1920, which is summarized in Hermann | 5 ]. In
this section I will establishrthe notation and basic properties of
ideal numbers,

Let K be an algebraic number field, and let O(K)} be the
algebraic integers of K, andlet U be the units éf O(K). Let I
be the group of ideals over O(K)}, and P the subgroup of principal
ideals, Thén classical algebraic number theory shows that I/P is
a f_,initelabe.lian group of order h, célled the ideal class number,
We can décémpose I/P into a direct product of cyclic subgroups,

- say Gy ><Gr2 Xun-XGr. Let NS = order (GS), s =1,2,,..,7.

For any ideal a, let [a] denote the class of a in I/P,

Choose ideals __b_s so that [hs] generates GS ,s=12,...,1.

N N
. Then _lg_s.s is a principal ideal, so let hs = c, O(K) = {cs) for

some ¢C_ € K, Let BS = SIJ c where we fix some Nth root of
¢ , with N={,c,m (Nl’Nz’“"Nr)'
s ) : P P P
1 2 T

Suppose a is any ideal, Then a = (c:)h1 b,

2 ”.br for

30me integer powers P mod N and for some c € K, Define
P P ® - 8
1
0= ¢ Bl se Brr . Then a is said to be an ideal number
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associated to the ideal a, Let Kf{a] = {da|d €K},
Beifore proceeding, I musi comment on the arbitrary choices .
we have made in defining &, Firstly, the decomposition I/P =
Gl X Gr2 Xoeee XGr is not unique, nor the choice of generators _b_s .
Secondly; the choices of < and ¢ are only determined modulo U,
and also the Nth root is fixed arbitrarily. Fortunately, however,

N is the same for any decomposition G, . .. XGr . Changing the

1
generators bs changes a by a principal element (up to an arbi-
t

trary N B root of unity) so K[a] is unchanged, The arbitrary

t
N b root is more critical., Changing the choice of ¢y generating
}gs__ and changing the branch of the root will change o by an arbi-
trary Nth root of a unit u € U, In particular, for a complex quad-
ratic field with h> 1, U= {1 -1} so the ideal numbers are unique
' . th :

only up to an arbitra.y 2N = root of unity.
Notation., Small underlined Latin letters will denote ideals of I,
Small Greek letters will be reserved for ideal numbers. Proposi-
tions and theorems will be numbered, and in case they have several

parts, a second number will denote the specific part. For instance,

Proup., 4.3 means Proposition 4, part number 3,
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iI,2 Properties of Ideal Numbers

Let a.,a2.,.00,2, be ideal class representatives, Define.
=1°=2 h h .

the set of ideal numberstobe Z = U K[a 1. I [a]l=[a_]
| mel ™ “m

~then K[Q]=K[§1n]. Notice that if [_q,_] # [im] then

K =
Kla] NK[a_]= (0].

The multiplication of K extends to Z, and in fact
K[a]-K[b] = K{a-b], so Z is a multiplicative group. Given

Pl PZ P

0 € Z, we have a = c.Bl 52 .‘”Br for some c¢ €K,
' PP P

Ps mod Ns R SQ we can associate an .idea,‘l a= (c)h1 Ihzz aoe l@_rr .
This association is a surjective homomorphism (-}: Z > I given
by —>_7\(G.) = a. The kernel is U.

' Fof any fixed [a], the addition of K extends to K [_a=].,
'so K[al] is an additive group. One caﬁnot, however, add two
rideal numbers from different K{a]. In other words, a+8 is
defined iff [()] = [(B)].

| For convénience, define [a] = {{a)] and [aa]= [(a)a]

- for any a€Z and 2 €1, One has that [OL_]-I = [0!."1] .

We define o € Z to be an integral ideal number if o is an
algebraic integer which happens if (o) is an integral ideal. Let

: h
"O[a] be the integral elements of Kfa] and O(Z) = U Ofa |

be the integral elements of Z. If a,B € Z, we say that a divides
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B, ﬁritten a | 8, if B/a is an integral ideal number, Note that
0&‘5 in Z iff {(a) l(B) in I . Fyroum this observation immediately
follow the multiplicative properties of greatest common divisors
and least comimon multiples .for ideal numbers, We can also define
congruences: if a,B,v € Z, we say o = Bmod v when (a-B)y
- is integral, In particular, [a]=[B] so that 0-B will be defined,
The properties of congruences in K extend to Z. In particular,
for a € 0(Z), define N(- ) = N(( a))| where N({(o)) is the norm of
the ideal (a) which is also the number of incongruent representa-
tives mbd(a) in K, The following.propositidn summarizes use-
fulrfacts we will need later,

Proyposition 1. Define {a, B) = greatest common divisor (o, B).

1) Let [c] be any ideal class, @,B€ Z, and a|B. Then
there exists y €K [c] sothat a=(83,vy\.

2) Let y={a,B), Then there exists 1, v. € O(Z) so that
Y= Op + Bwv.

3) Given a,8,vy € Z, au = Bmod v has an integral solution
uw€O0(Z) iff (a,¥) | 8. | |
B 4, Let [a] be any ideal class, B,y € O(Z). Then in K[_a_,j

there are N(B) residue classes mod 8 , and furthermore we can.

choose representatives Bl’ BZ’ ceey BN( ) € O[a] so that _(Bn, v) =1

i
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for all n=1,2,,.,,N(B), Finally if & € O(Z) with (5,8} =1,

then 681, G BBN( 8) is a complete residue system mod B

2
in K[ad].
5) Let (o, 8) =1 and suppose aB = ay mod §. Then
B = v mod?§, |
6} Define m € O(Z) to be prime if (V'rr) is a prime ideal.
Then for any a € Z, o= u.'rrI;1 Tng e T where u €U, each
ﬁn is prime, and each P, .is a rational integer,

Proof. The proofs for 1) and 6) follow from the corre-
sponding prrbperties for ideals. The proof of 2) is essenﬁally the
Eu_clidean algorithm, except that one must be careful to add num-
bers oniy\ when they lie in the same K[a]. The crucial point
that allows the algorithm to work is that zero is in O [g_] for
every [a]. The preofs for 3) and 4) follow from the correspond-
ing properties in O(K), once one multiplies by an appropriate

ideal number to put everything into the principal class, Then the

-prodf of 5) follows since 3} implies that an inverse exists, QED

11, 3 Ideal Number Matrices

Let GL(2,C) denote all 2x2 invertible complex matrices,
Let [a], [c] be ideal classes, and u € O{Z), Define a set of

matrices
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a _ e B o
Fg(p)—{(y 6)EGL(z,a:) ab-By=u,
-1 1
a€O[a], Yy €O[c], BEO[uc ], 5 €0[ua"1} .

Note that T2(p) = I2(y) isf [a]=[b] and [e] = [d] .

For convenience we will write

1 1
r=rty, 2= r¥a), and 7=y .
£ £ c k+3 < c
) ém
We now fix a representative of each I‘EL R
' ~n
25 . Bm |
Choose some Ca € Ca for all m,n=1,2,,..,h, As
' “n “n
' e a 2m
usual, we let C'}; :_Ca whenever [a] = [gm] and [b] = [_a_,n] .
= “n
For convenience we may choose C(al) =1 for m=1,2,,,.,h.
' “m

Proposition 2

1) {the cdnsistency rule), Let A€ I"c'?"(u) and B € Tc'llg (v).

Then A°B is defined iff [d]=[abeu™']. We have

b ab

ré(u) r (v} = T220,y)
c .@l).@'ifl __czh
L2 b _ .ab
2 rRw.c = T2,




b
3) c® | T2 =22 .
' ca b~ sb_
4) ck | _1c--A-c—-1’~ for some A€T | . .
ca b &b a b ¢
5) Given AE€T there is A’ €T .y so that C—A A’ C‘é‘ '
| 2< a ¢ < <
. -1
6) If BE€ T2 then B~ € I® |
c <
Proof, These follow from straightforward matrix manip-

ulation, - QED
Rerﬁarks. It is impossible to overemphasize the importance of the
consisf@pcy ru.le.Prop. 2.1, We wish to develop Hecke theory, so
we must ré.quire that the determinant of a matrix be defined. But
‘as noted above, addition is only defined within a fixed K[a].
Thus, one must take care that one multiplies matrices where the
 additions will be defined,
Later it will be convenient to identify matrices that differ

only by elements of 1"3; ~+ We will say that B ~B’ whenever

: ~m
there is an A € I‘a for some m=1,2,,,.,h so thai; B = AB'.

“m
We extend this to formal sums of matrices by saying that

B;l-D~B’+ D’ whenever B~ B’ and D~ D'.
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II.4 Vectors of Matrix Operators

In the next chapter, I wili define vector modular forms,
and now I will define the vectors of matrices that will act on these
forms, One should think of these vectors of matrices as opera-
tors, so in particular addition will be formal operator addition
rather than matrix addition,

Let p €0(2) and [b] be an ideal class, Choose repre-

sentatives 2js25500053

a, from each ideal class, with a, = (1)

representing the principal class. This choice will remain fixed

for the remainder of the thesis, Define a vector operator

) 2]

B} _/ | a
A= Alu,b) = (A[‘B‘rn]) ., h— [.32]
Ayl

where A G]".bh {n) for 1'n=12....7h.
[a ] a E R | ]
m =Im.

For the rernainc'ier of this chapter, we will be dealing with
many vectors of length h, Iwill reserve the letter m to run
through the set 1,2,.,.,h, I }:vill also drop the subscripting index
from vectors, and one must infer from the context and from the

undetermined m that a vector of length h is indicated, For
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instance, [A will be written (A ) .
lay,) la,)
I = 1, 2, .oy h

Let B = B(u,b)= (B " be another vector of matrices

[ém],)

b
B [ 1 € 1"1';' (1), Then we define a formal addition by
2m 23m

A+B = (A[ 1 + B[ ]) , where the addition is formal addi-
aad ey

tion of operators, not as matrices., We do not define addition of
vectors A(u,a) and B(wv,b), th even formally, unless p= v
and [a]=[k].

Let M(u,b) be the set of all formal sumé of vector opera-

tors A{p,b). Note that [a]=[b] implies that M(p,a) = M(u,b),

h

For convenience, we set M = M(1, (1)), M(p,I1)= U M(p,2 ),
. m=1 m

and M(Z,I) = U M(p,1). We can define multiplication in

uwEZ
M(Z,1) as follows:

A(y,z) - Blv,b) = D(pv, ab) = (D[ ])
: | la
" where

fa ] 2 -1

[272 v ]

In light of the consistency rule Prop. 2, 1, this is legitimate,

Choose C(b} = (C%a: ) where we fix some choice of
~“m/
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C- € Fb"a for all [b] and m =1,2,,...,h. Iwill reserve
=“m  ~“m

the letter G to be these fixed representatives throughout this
(1)

chapter., For convenience, fix Ca
“m

=1 for all m so that

C{(1)) = will be the multiplicative identity in M{(Z,I),

L BEIE L o B

M(Z,1) has the following properties,

Proposition 3

1) (Distributive Law), Let A, B,D € M(Z,1) and suppose

A+ B is defined., Then

(A+B)D:AD+BD and
DA+ B)=DA+ DB ,
2) M(Z,I) and M are multiplicative semigroups.
3)  My,b) = Cl)» M(u, (1)) = M(p, (1))« Cih) .
4) M(u,b) = M+ M(j,b) = M(u,b) - M .
- 5) M.- Ch)=Cl) M,
6) Cfa) Ch) = AC@_];) for some A€ M,
Proof, Everything follows from Prop, 2 along with the
definition of multiplication, ) _ QED

When we define vector modular forms,. they will be invari-

ant under M, Hence it is convenient to define equivalence of
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operators, We say thé.t B~ B’ ifthere exists A € M so that
B = AB’., Inparticular, B and B’ are in the same -M(u,b).
- We extend this to formal sums by defining B + D ~ B’ + D

whenever B~ B’ and D~ D’ , Notice that if

B = (B[a

]) and D = (D[a ]) , then B~ D iff
2 a_

[a ] : ['a"rn] for m=1,2,...,h. Thus there should be no

confusion between equivalence of vector operators and equivalence
of matrices defined earlier,

Proposition 4

1) ~ is an equivalence relation,

2) For any D, B~ B’ implies BD ~ B’D,

3) Suppose that D € M(Z,I) satisfies D~ DA for all A € M,

Then B~ B’ implies DB~ DB,

Conversely, suppose that B~ B’ implies DB~ DB’,
Then _D~ DA for all A € M,
| M,. 1) follows siﬁce M has multiplicative inverses,

"~ 2) and 3) are obvious from the definitions. QED

II.5 Hecke Operators

Before defining Hecke .operators, we will prove a lemma

which underlies the definition of Hecke operators, and which is
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essential to what follows.,

Lermma 1 (Standard Decomposition)

1T (o] a .
i I cr— . T €Er
) et (L[J T) T—I.E (1) hen there exists ' A 1
ca
such that
9] a -1 g
Tr = L []
(§ 5) =a-c*", 6 %)

with K,0, A €0(Z), €)= u, (K) unigue, ¢ mod A unique, and

-1 -1 2
[o]l=1a ¢ ¢

—

x].
2) If we choose particular K generating {K) for all (%) |(p),
and if we choose particular omod A for X suchthat KA = 4,
~then A ?s unique, |

Proof. Tet &= {rm,¥), so (¥} is unique and we can
choose a particular generator K. Let y=-¢/k and & =m/k

so that (v, 8) = 1. By Prop. 1.2 we can find o, B € O(Z) such

that ad=~Bvy =1, Thus,
. . !
G DG D63
where K} = W,

Choose v € O{Z} suchthat c’1 vA = o, where 0 is

some chosen representative mod A. Then -




——
€ bl

DEHE D=6 )

‘ -1
(E 2): (a+y\w. B+6v6) (g ;) .

Using Prop, 2.2 we find that

, -1
(ﬂ p) = A ('.:—Ezl'K . (?C G) for some AE€T .
o7 -1 o 3 -1
ckK 2 c
To show the uniqueness of A, suppose that
1 -1
A cg_ Kl (Kl 01) A C_@ Kz (Kz 0'2)
M SK—I 0 A 2 -gm-l 0 kz
I we let
! -1 1
a a
(“B)_cz_ catoa o !
A K-l ! c K_l
<% £
“then

Gl B @ %)
vy 8/\0 ?\1 0 )\2

Thus wc1=0 so Y=0, Then ad=1 so a, 8 € U, Now

ak, =K, so {K,) = (Kz). By uniqueness of generator K, = K,

which implies that a=1 and §=1, as well as showing that
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7\1 = 7\2 . One now sees that o, + B?\l =0, so 0 =0, mod Kl .

but by unigueness of choice of representative, 0, =0

2 . Ol’le

concludes that (?LY E) =1 andthus A; = A, Wh%ch verifies

statement 2) of the lemma, QED
We are now almost"rea.dy to define Hecke operators., Let

L € 0(z). Choose a, =1, Gyyeee, @, suchthat o € Ofa_]

and (am, ) =1 for m=1,2,,..,h, This is possible by Prop, 1,1,

For each (¥) with KA =, choose a particular generator K,

From each O[], fix a complete set of representatives

Gnmod A, n=12,,..,N(x\L

K ©
For convenience, define the vector operator (( n))

0 X
to be (B[ ]> where
2m

D)€ (e TR L

2) ((g g)) ~ ((:)C c;\')) whenever ¢ = 0’ mod A .

3) Given B € M(Z,1), X €0(Z), we have

G o)mene @)
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Proof, 1) One needs to observe that the consistency rule
Pr.p. 2.1 is not violated; otherwise the proof is straightforward,
2) follows from 1), and 3) is elementary. _ QED
We can now define the unnormalized Hecke (‘Jperators t{y) .
In the next chapter, we will renormalize t(u) but for this chapter
it is convenient to ignore the normalizing constants,

Definition. The umormalized Hecke operator t{u) for M € O(Z)

is given by

. -1 N(A) £ o o
t{u) (t[ ](u)) z C" (0 p}\n)
—m { k) K a n=1
K= “m
| N(2)

K o

-1 n

R

2 2 (3

where g mod A 'is a fixed complete set of representatives and

~where [cxp] = [g_r;ll KZ] .

Remark, Notice that t{y1) € M(py, (1)), We could also define a

more general Heclse_oper.a.tor t{u,b) = Ch) () € M(u,b), but

we will not need this generalization. |
The following lemma sizowé that up to equivalence, t(u)

does not depend on the particular choices above,
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Temma 2
b, b ] b
1) Replace Cba, € Fba by cba, € rba. for all {b]
—~m ~~m ~ —m —~“m

and m=1,2,...,h, Call the new Hecke operator t'(u). Then
Clh)~ C’(b) and t{u)~t (u)

2) Replace o mod A by Un' mod %, with Un' in O]
also a complete set of residues, Call the new Hecke operator
t (). Then

S

and t{p)~ t'{1).
3) Replace a by ‘Bm with Bm € O,[-q'm] and
(Bm, u) =1, m=1,2,...,h. Call the new Hecke operator t’(i),

Then
NN (e NO) e g o
Z m n) N z ( m n)
n=1 0 M n=1 0 A
for m=1,2,...h. Also, t{(p) ~ t' ().
4) Replace K by K’ where (K) = (K') and K% = u and
K'n"=u. Let Gn mod A and 01;- mod A’ be complete sets of

representatives, Call the new Hecke operator (defined in terms

of ¥/, 17, crn’) t‘(u). Then




an.d () ~ /().

Proof, 1) Prop. 2 shows that o - A cR for
—— ba [2 ] ba
“m “m’ —=m

some A €T
la) ™ T2y
t(1) ~t (.

+ Thus C() ~C’(b). Using Prop. 4.2,

2) TFor each n=1,2,..,,N()), there is a unique p(n) such that
o = Op’(n) mod A: Using Prop. 5.1 and reordering the sum, we
get the first equivalence, Then Prop, 4,3 with Prop. 3.5 shows
that £(u) ~ t (U
' 3) ‘Fixany m=1,2,,,.,h, By Lemma 2, there exists

A€ I"a such that

“m
Kk o o k* 8 o )
A-( mn):( mp(n)
0 A Aoy

Uniqueness of the decomposition implies that

={

k=k’, A=X’, and {0 } _
‘ nn-=

1,2,..., N0 Cpmitnst 2, ... Ny -

Hl

Bmcp(n) mod A, hence we can apply 2)

We also find that ¢ o
m n
above,

1

~4) By hypothesis, ¥= 7Kk’ for some NMEU, so A=1 A,

Using Prop. 5.1,




; -1 ; -1
K o M 0 K n o K mn o
0 A R /AVEEEY o A

. - . -1
Now (m, ) =1 for any M€ U, so Prop. 1.4 says that N o, is
a complete set of representatives mod A’. Applying 3) above, we
are done, QED

Theorem 1 (Invariance of the Hecke opérator).

B - t(p)~t{y)«B for any B € M(1, 1} .

Proof. Recall that t{y) = (t[a ](p)). where

“m
: ' o1 NOY w4 s
e ](Ll) ) z © -1 z ( ! n)
Tm () t Zm n=1 0 A
. € he u = |
2 -1 b )
where [a_ ] = [K _a_.m]. let D€ I'— _1 + We want to show
’ LI

that multiplying t [2 ](u) on the right by D will effectively per-

. K a0 _
mute the matrices ( p n) .
0 A

By Lemma 1 there exists a unique A € -T'a such that
“m ‘




where we fix representatives ¢’ mod A and where [OLI] =
s

1 1 2 | K o @
[b "a " kK’"]. Iclaim that each term ( P n) of t :
m | [a_]
0 A ~m
k! " Us: :
gives rise to a distinct term ( ) . If this is true,
. 0 l'
‘then Prop. 2.4 shows that
' 7 ’

. b K:'_l N(A‘ ) K:I a U'
TONR (LR LR D ) ( )
-t = m ==m (£ Y s=1 0 A

KA =p m
and using Prop. 2.2 we may conclude that
t .(M)'DND‘Ut (y) for any D' € rk
[a ] [a_] ba  °
"This means that if B = (B and if we let D=8 s
. [Qm] [a U--l]
—m
":
D B[_@ 1’ then
m

t{p)« B ~ B - t(W .

k! Ct1- cTs’
We need to show that the matrices ( ) are
0 A

distinct. Suppose we have
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and also

-1

K K a o -1 K o o
C 2 . 2 q 2 . D= A - C_'ng . r s ]
T o-1 2 K-l

Kpam MO A2 m

' 1 K. = ¥k = =
We wish to show that 1 Cz, ?xl ?\z,and OLPCT1 thcz.

Simple matrix manipulation shows that

-1 ..]_ - ""1
K a o K K K o o
R AN s L T T 2 “q°2\
Y K-l 1 2 K-l 0 X
S 1 %m 2 & 2
Using Prop. 2.4, 2.5, and 2,6, there exists A3 €T .1 such
'a"mKl
that
“ %1 kKL kK, a0
1 2 2 2
—A3D C 1 _1 - -
o A/ 1 2m N0 Ny

Both sides are in the standard form of Lemma 1, so by the unique-

ness statements of Lemma 1,

(Kl apol) ) (Kz °‘qu> |
0 A : 0 Y ' QED
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We are now ready for the key theorem of this chapter,

Theorem 2 (Multiplicative relations of Hecke operators),

N -1, ({8 OY),/MV
CECRRIDANL CECE ( e))t(_) :
ef(u, v
Proof, First we will show that this relation holds for all (u,v)=1,

then for prime powers, and finally for arbitrary M and Vv in

o(z),
Suppose (4,v) = 1. We wish to show that t(u)t(v)=t(u\))..
Let
N(®)
K o
= > cwh D (( n))
(k) n=1 NQ A
KA= |
and
N(E)
< ) ¢ w
Ho = 2 cgh D (( r)) :
(C) r=1 W0 g
€=
Then

' . CHE W
Hw o) =t D, ce™h (( "))
(©) =1\o &
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using Theorem 1, Note that I have also used Prop, 4.2, I will be
using Prop. 4.2 and 4, 3 continually throughout this proof, and will

generally not mention their use,

| N(A)} N(E) ¢
() t(v) ~ Z z ciehy et Z z (( ))(( r)).
(k) () : n=1r=1 0 £

Ki=p CE= v

Using Prop. 3.6 and Prop. 5.1 we find that

Wt~ D, 2 cle)™h Z > ((Kg KwrM“g))
' 0

(k) (€) n T AE

I claim that K@r + Gn§ is a complete set of representatives

;nod (LE) if o mod A and w  mod € are complete, Further,

note that [KUUr + Unil = [AE]. Assuming that my claim is true,

Lemma 2 shows that the right side is t{uv) and we are done.
Suppose o mod A and W mod § are complete sets of

- representatives, with [Gn] = [A] and [wr] = [E]. There are N(?\g)

repreéenté.tives mod AE and I want to show that if wr +0n§ EV

cw_ +o & mod AE then w_ =w_ and csn'= o, -
Clearly ‘}er = KW mod £, By hypothesis, {i4,v) =1 so

{£,€) = 1, Using Prop. 1.5, W= w mod § hence w = w .

Then ¢ £ =0 E mod AE so 0= 0 mod A which says that
n P n P
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Thus we have finished showing that t{u}t(v) ~ t(uv) when-

ever {1,v) =1, Now we wish tc show that for prime,r t () t('rrr)

+1 -1 0 -
~ )+ N G ) ((T(; ' 'rr)) t(Trr_I) for any r a positive
integer,
Let
-1 T 0 " 1 n
=00 (G 2 2 ()
n=1 \0 1
and
r-s

) r
tm’) = z Gl ®)
: 8=0

By Theorem 1,

T N(T?r—s) S o
tm) T )~ Z Cir™®) tim Z (( o ))
. §=0 =1 o w  °
T ) | Nt~ %) r 0 ﬂs "
- 2,0y 3 ()
s=0 ) u=1 D 1 0 ‘rrr 8




r-1 NTT®)y ,, st
. ! < 1 ﬂwu
-~ z C('IT ) C(Tr ) 2
r-s
s=0 u-= 0 T
»+
1 (T Yoo
+ C(r™ ) :
4] 1
r ) N{m} N(r 05w to nr-s
LRI Z or
s=0 a=1 0 ﬂr-sH‘
. ’ -g+l ..
Just as above, we find that there are N{m ) distinct
- -5+1 .
wu + o 'rrr Slnod ﬂ_r 8 . Thus Lemma 2.2 allows us to combine

the last two expressions, and we conclude that

r-1 N (rr

} s+1 o
L m T |
) ~ D Cer ) C ) Zl (( .nr_‘fs))u(nr“).

s =0 u =

: r-s=1 r-s-1
Decompose w_ =1 to where T mod T
7 u v n v

r-s) r-s-1

and 0 mod T are anique, Since N{m = N(m ) N(m), we

r-s-1
see that To mod 17 © and Gn mod 1 are complete sets of

representatives, Thus

r-1
' +1 - -1 0
e~ o™ - 3 oo e (7))
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- ((rrs T +0 nr's"l‘))
R _ S T T T |
o n=l v=1 \o  gost U

Using Prop. 5.3 and 3,6, we can interchange terms and apply

Lemma 2,2 to get

) £ 7Y ~ et )

N(m)

e S e 3 ()

~ e ¢ N o ((” 0)) et Y

0
"Now we will use induction to show that
. min(q, r) i y oS 0 re2e)
trdy e~ D NS o) )t .
s=0 0 (]
Agsume this is true for g-1 and all r, with q 22, We have just

shown that it is true for g=1,

trd) ™) ~ [em e - N e (T 2))- e H] - ™)

by the above, Applying the inductive hypothesis,
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min(g-1, r)

s Hem) ~tm -
s=0

S

1 0
. N(ﬂs) C(Tr—s) (( S)) 1:(.n.q+:ec—1-23)
0 T

| _ min{g-2, v} _ 0 .
- N{m) C(TT-I) ((g ?T» ' Z N(r®) ctr ®) (( S)) .

s =0 0 T

A _I___‘
.t(ﬁquZS)

min(g-1, r) s

. T
~ > NE® e ) ((
0

0
gqtr-2s
e

+ N e Y ((” ﬁ)) t(ﬂq+r-2_zs):|

s=0

0

min{g-2,r) TTS+1 0
—5- fp-2-
_ z N(Trs+1) cw s 1)<< s+1)). A L 2 Zs)
. = 0 1T ’

s =0

where I have used Prop. 5.3 and Prop. 4 and Prop. 3.6 several
times,
Finally, define flg,#)=1 if r 2q-1 and f(g,r) = 0 if

r<qg-1, _Then the above becomes
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min{g-1, r) s

TR A\Y
trDem~ D Nw®) o) (( ))t(nq+r‘zs)
0 s

g=0 ™

'qu - 4] _ '
+f{q,r) NinY) car9) (( )) g Yy,
0 ‘rrq .

This implies that

min(q, r) s

| : T 0
DT~ -y N@S) o) (( S)) gmdTr2e)
o

11

which is the desired result,

‘We still need to consider the general case of U and v
;)vith (L;.‘,'..\J) > 1, First we notice that the expressions we have
already shown imply commutativity., By Prop. 1.6 we can factor
K and v into prime= factors, where we can fix a particular gen-~
erator Tr for any prime ideal () dividing (1) and (v). We have
just finished showing that the result is true fo'.r each érime factor,
and then we cén use our stat-ement about relatively prime t(y)

and t{v} to conclude the proof. QED

11,6 Example: Hecke Operators for K = Q(4/-23)
First we will define a set of ideal numbers. X is well

known that ©Q{/-23) has class number 3 and that either prime
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ideal dividing (2) generates the ideal class group. We can easily

caZculate a set of ideal numbers Z corresponding to ©(y-23).

- - + /-
Let B, ~ (l——-ﬁ, 2) and B, = (LTEE_’ 2) . We

2

will choose P, as the generator of the ideal class group, Now

* + ’-
B; = <—3——2£3—) so we choose some branch of the cube root and

/3 + /-
define an ideal number T, =3 3—22-2 which corresponds to

+ /-
the ideal P,y Because the choice of generator of (——3 ) 23)
has an ambiguity of sign, and because the choice of cube root is

arbitrary, 1, contains an arbitrary sixth root of unity. We fix

2
this choice, however, so the rest of the ideal numbers are
determined,

For any ideal a, if a = (a) is principal, then the corre-
sponding ideal numbers are *a, If p,2 '—'l (a) is principal, then

the ideal numbers corresponding to a are = a/m If g;_a_ = (a)

2.

is principal, then the ideal numbers corresponding to g are

| .i a/TTZZ = £g 2/(.%..:!:__2_.__ "-'2‘3)°

For convenience, let b =#-23, One can verify the follow-

ing facts,




——
i

[aS Y
[
=3

R
£l

o

o8]

o]

oo

O

(15;10) _

1
=l
a8
ige]
&8}
ot

- 38,

(5_;313) - 5,5

(15;33) - p

e

41

(11 + 3b) _ = (ll - 3b) _
2 Po24r1 > /= P,
where p _ are defined consistent with the following table:
q . & =23 mod Bq A/-23 mod Fq
3 -1 1
13 4 9
29 21 8
31 15 16
41 10 31

Now we can define corresponding ideal numbers.

ing:
_3 3+b
M 2
141
M357% Ty
9+
T3~ * T,

_ 2
T, = —

2 'rr2
= _1-b
3°2m,
= _9-b
13 21

Define the follow-




_5-3b
29 4 " 72
15 - b
LY £ M
11 + 3b
41 4 "2

Here m corresponds to
q P *Eq

We can now calculate some multiplicative relations we will

use later.

for

39.

ﬁ29 ) 52.+1'rzb
ﬁslzlg;;
.__I_r_41 - llg;zb

and "ﬁ'q corresponds to -—ﬁq .

g = 2, 3’ 139 29, 31; 41'

For convenience, let O, = o[, 01- = O[Trz], and

- 2
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As a typical example, we will find the Hecke operator

To do this, we need to fix representatives mod T and

t(m 13

13)

also fix our "standard matrices" C{a). For convenience we will

1‘r2aL Tr;
denote T by r® and C
P b P
2 2

by C where a and b may be

a
b ?

considered mod 3, since the class number is 3, We will also

- denote t o (TF13) by ta(ﬂls) so that
im 1
2
£ MMy 3)
t(i‘rl3).= tI(Trl3) .
t, (M 5)

As a choice of representatives mod T in OO , take

13
0 0,1,2,...,12, In O1 , take representatives 0, s 21T2, cess 12172 .

: . 2 2 : 2

and in O, take O,m ,Zﬁz,...,lz'ﬂz .

For the C;' , we can consider "wariations' of the matrices
-1 T
(O ) and (3 2 . In particular, let C ° = (1 0) for
1 0 U Ty m 0 1
m o -1
m=0,1,2, C0 (1 O)form-l,Z,
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2 My Ty 2 Ty T,
Cp = R R G
T 3 2 3

Now we can define 1:(T‘|'1 3) by letting

"

- 12

TsTs ™ oam,
oMy 5) = ¥
M3 M/ 950 \0 T,
0 -1 12 1 8
and tl(Trl 3) = . . + ZO , n-
13 s 13
T T, 12 1 r'rrz
1
and 1:2 (TT1 3) = 313 2 + z 2 .
ToMs T3 =0 \0 Ty

Consider the principal class component of t(1'r13)3 . This

component is simply t O(TT ) . t, (7 1 3) tl('frl 3). Multiplying out the

13

matrices directly yields the following expression:

o 2+'1Tn'rr ' (T_T'ﬂ'z +TF2TT )
MMM " TRl30 s 313 T T s
2.2 , 2 __ 2
+ - -
PR E R 313
T L S M 1 W O -{mm +qTr21-r )
23" 933 313" 4T3,

12
¥ Z e 2
q=0 3"13 : PASEY




2 2— 2 _
1 + -7
2 [T FT, T, 3713
f Z T 2 +2r1r T"z -T0, T
¥ =0 313 “t Mg M3
22 2 __ 2 _2 2
1 T + 1T + +
2 Mo Ty g TToT, 5 Tty 1,1, s(rr31713 n2ﬁ13)
+ z 2 22, 3 . _ 2
s=0 a3yt Mgy TpMygtmy T8l mall, 5 +1T,mam, o)
12 12 1) 172 + e -1
R A AL
LSS ,
q=0r=0 T 3 0

. 2 —_ 2
: , + .+ s(Fom, +
12 12 1T3Trl 3 +qﬂ‘2 T T,y q1T2‘rT3TT1 g s tam,m 3)

+z z TTWZ 1TTT2+STT‘IT2

q=0 s=0 2M13 3713 53
iz i2 i TF 'rrz lnz"" ™.+ sT.T
. 33 213 27313 3713
Y
, + +
r=0 s=0 \"2™3 MMy g V2T, Ty + ST, o
12 12 12 1 T 2 + + s
E Z M3 213
* E 0 173

gq=0 r=0 s=0 13

 Notice that every entry is a principal element. In other

words, ideal numbers are not needed to define the principal com-

3
ponent of t{m )" .
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11,1 The Quaternionic Upper Half Space

The classical theory of modular forms considers functions
defined on the upper half plane which is acted on by SL(2, R), As
one might expect, mathematicians qtj:ickly generali.zed the basic
notions, One of the earliest generalizations was the Poincaré
- 3-space, also known as the guaternionic upper half space.

Let 1= ,\/_-—1,j, and iej =k be the unit basis elements for
the quaternion algebra Q, One defines conjugation as follows:
g=at+bitecj+tdk €Q has conjﬁgate g=a-bi-c¢cj-dk€Q
for any a,b,c,d €R, One defines the norm of gq to be
Iq, = (az ’.sz + '::2 + dZ)I/Z- The following proposition summar-
izﬂes trivial but useful properties of Q,

Proposition 6

1) (qlqz) :az‘c‘}"{ fOI‘ a‘ny ql’qz E Q o

-1 -
2) g =q/|q{z for any q €Q - {03} ,

3) ak=ka forany a€C ,
Proof, This is l.eft to fhe reader, QED
Define the quaternionic upper half space H by
H={z€Q|lz=x+yk, x€C, y>0}, Thus HﬁGXEE{+. We

define an action of SL{2,C) on H by

(& E) (2) = (az +8)yz + &)
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for (?{ i) € SL(2,€) and =z € H,

Proposition 7

1) The action is well-defined, that is, if A € SL(Z, €) and
z € H, then Alz) € H,

2) TFor any A,B €SL(2,€), A(B(z)) = (AB)(z) .

é) The maximal subgroup of SL(2, C) fixing z =k is SU{2).

4) SL{2, C) acts transitively on H,
Proof, All of the;e have slick pi-oofs (see Siegel [ 9 ]) but also
follow from straightforward calculation using Prop, 6, I will not
need 3) and 4) so will not prove them, and 1) and 2) are simple,

- ' QED

111, 2 Quaternionic Representations

Quaternions do not commute, which discourages considera-~ -
tion of quaternion-valued functions. Using representations, how-
ever, _one-can obtﬁinﬁcumplex_valuedimmtmnsmlkarquatemon—J
argument,

Let Mat(, €} be the algebra of all nXn complex matrices.

The basic representation ¢ of th: quaternions Q is given by:

p:Q = Mat(2, T)
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plx +vyk) = (X? _}S;) for x,y € C .

We construct other representations of Q by considering

a8 .
symmetric powers, Let A= ('Y 2) be a matrix, and u,v

)
variables, Then define u’,v’ by (“,) - (“ B)(“) . Let the
v v b0/ \w

)

n-fold symmetric product of A be the (ntl)Xx{ntl) matrix A

given by

Now we define the n-fold symmeiric quaternion representation

pn: Q ~» Mat(ntl, C) by

n : (n)
p{x +tyk) = (

H|
S

X
"y

Notice that 0 is actually an abusive notation; for
instance, ,02 has nothing to do with p+ p. To further abuse nota-

- -1
tion, let p (x + yk) = (™ + yk)) .
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Proposition 8

1) " is a representation, that is, for any 4,9, €Q,
n n, ., n
pa;9,) =0 g}) e,
-1 n, -1,
2) p{d)=p1{q ) .
3} pn('rq) =" pn(q) for any r CR .,
-n _ -n -1
4) p (qq,)=p (g,) P gy .
Proof, 1) p11 will be a representation if both p and the n-fold
symietric product are representations, Simple calculation shows
that p is a represemntation, If we let

L= " !

() = @B Q) ama () =3 ()

then

#

(o) =2 (=)= 2 (C)

(n) , ) (n)

B , hence this is a representation.

s0 one sees that A = {AB)
The rest of the stateﬁents are straightforward de.ductions

from 1) and Prop, 6. QED
Let =z =x‘+ vk € H.

Proposition 9

1) For any 41,j = 1,2,...,ntl, the (ij)th entry (pn(z))ij is a

polynomial in x, X, and y. with rational integer coefficients,




47,

homogeneous of degree n.

2) The first row of p (z) is given by
n _/mn \ ntl-j j-1
= (1) YT

3) Let x € C, Then P (x) is a diagonal matrix

ntl-i i-1
d. -
gl x Doz, mtl

Proof, 1) Looking at the definition of the n-fold symmetric pro-
duct, one sees that the entries of A(n) are polynomials in the
entries of A with rational integer coeffi;:ients. Homogeneity of
degree n follows from Prop,. 8, 3,

The proofs of 2) and 3) also foll;JW airectly from the
défillit;lén of the symmetric product. : QED

The following two examples illustrate the typical form of
the representations. In particular, notice how the outside"

entries are single terms, while one gets more complicated ex-

pressions as one approaches the "center" of the matrix, Let

x+tyk €H.
2 —
X -2Xy yz
2
-2 1 — 2 2
p et yk) =< 2 2) Xy =1 -y -Xy .
=" +y . )
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' 4
p—é(x + yk) = (“““““2:'1—‘—2> .
[ +y

= any ey -4y v
2 s |z_ﬁzyz sz e 1zer 3%y N Wz g2 exy
:—;Zyz 2% |x|2y-2§y3. |= 14~4. lx 2y2+y4 -2 |xfxy+ 2xy3 xzyz
N M L L S 1 i Al
A tacy® L 63242 iy 4

ITI, 3 Vector Modular Forms

"We will define modular forms consistent with the model of
Eisenstein series .\%.rhich we will develop in the next chapter, .Let
pn be the n-fold symmetric quaternion representation as before.
Fix 'a.nr imaginary quadratic field K = N{/d) with discriminant =
d <0,

" In order to concentrate on tﬁe properties of modulazé'-
forms with class nul.'nber = h >1, we make some simplifying
assumptions. I will assume that the discriminant d #~3,-4 and

_tha.t the weight n is even. Thes¢ assumptions elimninate the need

for multiplier systems and characters of the unit group. The

reader interested in the more general case is urged to see
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Hermann [ 5 ] or Patterson-Goldfeld [ 8 ] for an indication of the
co.aplications we are avoiding,
Notation., For the remainder of this thesis, we will be manipulat-
ing many matrices and vectors, To avoid specifying the subscripts
each time, I will reserve the subscripts i and j to run through
the set {1,2,,.,,nt1}. The only exception will be the few times
when 1= ,f:T in which cases there should be no coﬁfusion. An
(m+1) X (ntl) matrix (c.j) ' will be written (cij)'

! i’j:]'!z_"’"’n-i-l

An (n+l)-length column vector (ci)i will be denoted

:1, 2, e -V, n+1
(Ci)° Similarly, I will reserve the subscript m to run through
the set {1,2,...,h} where h is the class number of the fixed

field K = O(s/d), Let BprBoreser be a fixed set of representa-

h

tives of the ideal class group, with E (1). Then we will also

drop the subscripts from h-length vectors subscripted by m. For

instance, the h-lengil. vector (f(z, g"m))m'—'l, 2,....h will be

denoted (f(z,a_ )) and (A ) will be written
*=m la ]

m=1,2, ...,h
(A[_@m]) )

Let [a] be any ideal class. Let f(z,2) be an (ntl)-length
vector of complex~valued functiors, say (fi(z, al.
Definition. f(z,a) is an [a2] component of a vector modular form

of weight n if




50.

1) each fi(z,g) is defined and continuous on H,
2) each fi(z,__a_) is bounded 'near infinity, " that is, on a sub-
set of H givenby {x+yk|y>1}.
_on _fa B )
3) f(A(z), a) = p7(vz + 8} f{z,a) for all A= v € T'a .

Definition. The [a] component of the vector slash operator of

weight n is defined by

-n, -1/2 -1/2

f(z,a) | A = o7y (vz + 8) f(u "% A=), a)

where A = (C:’ B) € ]% (W) for any [b], where one fixes either

square root of U € O(Z),

Proposition 10. Let A€ T"'-" (;,1) and let f(z,a) be an [a] com-
ponent of a vector modular form.

1) Cha.nging the choice of square root of I does not change
the slash operator,

2) f(z,_g_) | A is an [_aéla_2 u-l] component of a vector modular

form, If B € TS > _1('\}), for any [c] and any v€ O(Z), then
bu |

(f(z,2) A)|B = i(z,2) [(AB).

o
lo

Proof, 1) By assumption, n is even so pn(-l) = pn(l). Also
B | 1 1 -1
-l /2 Alz) = u /2 A(z) so replac’ng u /2 by - /2 does not

change the slash operator,

2) This will follow from the consistency rule, Prop. 2.1,
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and a careful application of Props. 6, 7 and 8, Let

_fa 8 b
o e

and .
= (T Pye rs
(LIJ T) c abzu- 1 (\)) o
Then
- - ~1
flz,a) |A = p M 1/2(\(2 + 8)) f(n /2 Alz), a)
50

(f(z,2)|A) |B = p-n(\fllz(tbz + 1)) .

-1/2 1/2 . -1/2
hY)

. B(z)] + 8)) £(u """ Av "' “B(z2), a)

-n&f?/z(v[

S Y200 sy o MRy v Y g + )

+ 6v—1/2(¢z + 1)} gz + ot vllz)'f((!dv)-”z AB(z), a)

- 17 .
o ) [y + 59)n + (vt 5T)T) -

Cipw 2 AB ), a)

£(z, a) | (AB) .

' 1/2 1
Notice that several times I have used 1) to replace /2 v /2 by

(L 0)1/2 . | QED -

Definition, F(z) is a vector modular form of welight n, written

F € Fln), if F is an h-length vector of functions F(z) = (f(z,_a;m))
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where each f(z,_a_t_m) is an [_qm] comiaonent of a vector modulé.r
form, m=1,2 ,,.,h
Definition, The vector slash operator of weight n is defined for

FECF@n) and A= (A ) € M(u,b) by
[2 ]

F(z) |A = (glz,2_ N

m

where

-2
glz,a ) =flz,a Db u|A
= " fa b y]

for m=1,2,,..,h.

Proposition 11

Let F € Fln), A €M(u,b) and B € M(v, ¢) for any
u,v € O(Z) and [b1], [c] ideal classes, Then (F(z)|A)|B =

F(z) |(AB). Furthermore, F(z) |A=F(z) for A€M,

[ﬁmﬂ

acts on f(z,a ) | A
- m' | {a_]
a b U] - “m

Proof, By the consistency rule, Prop, 2.1, if A= (A

and B = (B [.@.m]) , then B[

so the slash operator dbgs send I(n) into Ffn). The rest follows

from the definitions and Prop, 10, - QED
Let % be a character of the ideal class group., Using

Prop. 3, one sees that as a m_gltipiicative semigroup, M has index

h in M(l, 1), This suggests that F{n) can be decomposed into a




53,

direct sum of spaces Fi{n,y) depending on ¥.

Take F € F(n), and set

h
Fz,y) = % Z Y(gm) F{z) ‘C(_gm)
' m=1

| Then Prop. 3.6 and simple calculation show that F(z, x)] B =
x(]o:_) F(z,%) for any B € M(1,b), for any [h]. Define Eln,x)
to be the set of all F € F(n) such that F(z)|B = x(b) F(z) for
every B € M(1,b) and all [b]. The orthogonality relations for
finite character sums show that F(n) = sf F_(ﬁ, %) where the

direct sum is over all X which are characters on I/P ,

Proposition 12

Let F € E(ﬁ;x) have f(z,a) = 0 for some [3]. Then
f(z,b) =0 for all [b] suchthat [ab] is a square in I/P. In
particular, if 1/P has no 2-torsion, then F =0,

Proof, F € F(n,x) means that for any [¢], Fz}| Cle) = X (c) Fz).
From the definition of the slash operator, this says that |

A
m

ca (84
===

L]

p = X&) i, 2 )

-

2 ) 2
“Let a_ “ag . Then we have that 0 = ¥{c) f(z, ac } hence

2 .
0=1f{z,ac ) for any [c]. Now [_lg]z[g._g_z] for some [c] iff

[ab] is a square in IL/P, QED
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Proposition 13

Let F € Efn, x) with F(z} = ({(z, gm)).- Then

s ) (0 7)) - Xy te el

-1
o -1 2
Proof, (1 0) ~ C -1 and hence it follows from the defini-
2miEm
tiong of the slash operator and F(n, %) . _ QED

We now wish to decompose Fi(n, X) with respect to the
units, Let ©® be a character on U = {1, -1}, There are oniy -
two characters, the trivial character and the character @ (1) =1

and ®(-1) = -1, Given F € F(n,¥X), define

o -2 -

1
2

Fz,9) = (F(z)+°P(~1)F(z)

Proposition 14

Take F € E(=, %) and let F{z,9) be as above, Then
Fz,?)|B = x(b) (-1} F(z,®) for any B € M(-1,b) with any [b].
We gef a decomposition In,yx) = @ F{n,x,®) where
¢

F €Fn,x,?) whenever.

e | V) = oen 2w
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1 O

0 -l)) for some

Proof, B € M(-1,b) implies that B = A ((
A € M{1,b). This gives the first staternent, and then the ortho-
gonality relations for finite character sums give the decom-
position, QED

We want to extend any character © of U to a character
of O(Z). Recall that the rational integers have two characters on
the units, the trivial chavacter and the signum character. The
signum character.extends t(; all ;'ational integers by defining a sub-
set of positive integers. Analogously, we will define ”positi\.re”
elements of O(Z), For each integral prime (1), fix a generator
m €0(Z), and call ™ a "positive' prime element. Define

Py P, P '

0,(z)= {a€0Z)|a=m, ™ --'-nrr

+ 1 2 with Ps € Z and

.
m_ ‘a positive prime element, s = 1,2,,..,r}. Let O+[gm] =

Ofa_] N O, (2)

Proposition 15

1) For any o € O(Z), either o€ O-P(Z) or -a€ O+(Z) .
2) (12 € O+(Z) for all o € C(Z),
3} A character ® of U extends to O(Z) by ®(u) =1 for all

M CO(Z) if © is the trivial character, and if @ is not trivial then

o) =1 for pE€E O+(Z) and @ (u) = -1 for -1k € O+(Z),
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Proof, Prop, 1.6 shows that one can get a prime factorization. In
fact, this factorization is unique 19 to a unit since the prime factor-

ization of the ideals is unique. The proof follows from this, QED

III,4 Renormalizing the Hecke Operators
In the classical case, one normalizes the Hecke operator

T (m) by multiplying by mn/Z

-1 (see Ogg [7]). We make a similar
normalization in our case,

| Definition, The normalized Hecke operator T(i) for U € O(Z) is
defined by

ln/Z

T(u) =t()« | N(u)'1

where this means that one acts on each component of a vector mod-

ular form by t(u) and then multiplies the resulting components by

™% wew
n/2

Recall that n is even so | u| is well-defined, We re-
phrase Theorems 1 and 2.
Theorem 1’

For any u € O(Z), ¥ € Efn, %) implies that F(z)|T(u) €
Fm, v
Theorem 2’

For any p, v € O(Z2), the Hecke operators satisfy the fol-

lowing relation on FE(n, x):
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T T(v) = Z N(e)_lri(e) lo]® T(‘H‘Q\i)
( 8) integral 8
o], v)

0

o)F P) and F)|Cle™) = T (o) Fla).

Proof, First, F(z) !((?)
Given these facts, the rest is straightforward calculation from

Theorem 2 and the definitions, QED

- Proposition 16

On Fln,X,®), T(-p)=9(-1) T(n).

N

: 2 -1
Proof, t{-u) ~ ((cl] _(IJ)) t(y) and Iulz N(p) = is invariant under

a sign change, ‘ QED

11, 5 Fourier Expansions

Let FEFM,x), Flz) = {f(z,2 )) and each f(z,a ) =
m m

boovy -1
( )uf(z,_g._m) for all v € O[_a_,rn]’

(fi(z,gm)). Now f(z,_:_s._m) 0 1

so we expect to have 2 Fourier expansion,
Let {8) be the different of K/Q, where & € O+(Z) is an

“ideal numBer associated to the different ideal., Let tri{x)=x+X =

2 Re x for any x € @, .By definition of the different, (8) ~ =
-1 : .
§ "+ 0O(Z) N K is the dual lattice to O(K) with respect to the
. -1
trace. From this it follows that & - O(Z) N K[g,_m] is the dual

-1

lattice to O [_gm]. Thus we expect a Fourier series for f(z, _a_m)
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-1
in terms of § - O(Z)} N K[_a_m], that is, in terms of

2 i tr (%35) 2 i tr (B—g‘)
e for .BEO[{E».@,_HI]° Set e(Bx/8) = e .

I will now restrict the possible coefficients of the Fourier
expansion, Take S to be a finite index set., For eachq €5,
each i=1,2,...,n+l, and each m=1,2,...,h, let ci(_a_m,q) and
s(i,q) be complex numbers, These will correspond to the
Heonstant'' terms of the Fourier expansion. For any B € O(Z),

| define Wi(y) to ‘k;e Ia complex-valued function of a positive real
variable, and let ci(B) be a complex number,

To guarantee convergence, we assume that |ci(B)1 =

M -M,_ vy

.O(] Bl .“1)- for some M, and that |Wi(y)| =0 %) for some

Mz . Here O{-) means the usual big O bound. For convenience,

if Wi(y) is identically zero, then set all ci(.B) = ci(_gm,q) =

s{i,q) = 0, Also assvme that S(i’ql) = s, qz) only if q; =4, .

s(i, q)

Also let W be the system of functions {y ; Wi(y) lq € S,

i=1,2,...,n+1},

Definition, F € Fn, %) is said to be a W-system vector modular _
form, written F € F'(n, ¥, W), whenever each fi{z,g,_m) has a

-Fourier expansion
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flz,a )= 2 .,y %Y
q €S i~ m

F
+ Beoz[a ]ci(B)Wi(lBIy)e(B:ﬁélé) ,

=]
=m
where Z, means that one eliminates the term $= 0,

For convenience, we denote the Fourier expansion of
F € P, x, W) by foya, . e(B)} where m=12,....%,
i=1,2,...,n+l, q €5, and B € O(Z). One can verify that the
ordinary theorems about uniqueness of Fourier series of functions
periodic on a latﬁce say that the coefficient system {ci (_e_L_m, q);
ci-(B)} uniquely determines F € Ffn, ¥, W).

Throughout the rémainder of this séction and the next two,
we will deal exclusively with functions in Fin, X, W), Thus,
throughout this and the two following sections, assume that any F
mentioned is in Flz, x,W), with F{z} = {f (z,gm)) where
f(z,gm) = {fi(z,_zlm)) and where F has a Fourier coefficient sys—-
tem. {ci(g,_m,q); Ci(B)} . Similarly, assume that any G men-
tioned is in F(n, ‘X,W) with G(z) = (g(z,im)) where g(z,gm) =
(gi(z,gm)) and where G has a Fourier coefficient system

40, (B},




60,
We now want to investigate the relationships between th.e
fi(z’g“m)' First we need a technical lemma.
Lemma 3

Let fa i} be a set of complex numbers for all B € O[5§_m]

B
and i=1,2,...,0%l, Assume that z ]a.B il converges for
. ?

each i, Furthermore, assume that L ag 4 e{Bx/6) is periodic

-1
on G/O[E—L‘m] .
Then

n+l

_ g 4 xi_l e(Bx/8) = 0
i=1 peofsa_] 2

iff each a 0,

B,i

Proof, We have

2 (Zag () -0

i \P

1

We may assume that there exists a B such that a ntl £0

B,
{otherwise replace n by n-1}, Let B be a bound for all

for all x, Now

)B:|a.8,i| , SO B% % aé,ie(BX/S)

B B

- XL
£ 5 npnese - 5 (3 0ol 4
’ _ i= ’
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Putting in absolute values, using the triangle inequality, and

dividing by ]xln , we get

n

c > MM

i=1

lZ %8, ntl e('?’esﬁ)

B

The general theory of Fourier series says that

L

: aB n+1e(Bx/6)=0 for all x € € iff all a

B, ntl = 0, By our

assumption, therefore, there exists x, € € such that

v = L 28 ntl e(BxO/S) £0, Now v =L aB’n+le(B(XO+P)/6)

for any p € Z. Thus,

n

0<|vl < 2 |xgtpl

i=

—n-1+i.B

-1
for every p € Z, andthus 0 <|v| <np +B for all p large,
which is a contradiction, hence every a 8,1 =0, QED
1
Theorem 3
Take F € F(n, X, W). Suppose that for some m,
f{z,a )=0 forall z € H. Then f(z,2 ) =0 for all a_ such
1= ) P P
that [a a1 is a squarein 1/P.
m TP

Proof, By Prop. 13

0" @) €, (fz'l, a ) =Xa_ ) @al)
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or thus

€2 e N = X, ) o™l (e, 2D

-1 ]
By hypothesis fl(—z , am) = 0 so using Prop. 1.2 we find that

$1-1 3-1 1.
0 = E ('nl) xn11y1 flz,a ) .
o M- i m

Now put in the Fourier expansions to get
ntl

q

iTl

DY 1 e (BY W ([B]y) e(Bx/8)
Beo[sa_1 ¥ 7 |

. b

We apply Lemma 3 to find that

qgs ci(_a_‘-.;:_, q) Ys(i’q) = 0 and ci(B) =

]

* hence f(z, a ) =0 for all z € H, Prop, 12 finishes the

proof. X : QED
Remark, If I had hypothesized that fi(z, _a_.m) =0 for some other
i, then the same proof would‘have worked, except that I would

have used Prop. 9.1 instead of Prop. 9.2. This would mean that
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instead of ci(B) = 0,' I would have obtained a sum of terms
yr Ci(B)Wi(I B|y) for various i and various powers r, 'fhus
one would need to make some mild hypotheses regarding the linear

independence of the yr Wi(y-) functions.,

I1I, 6 - Eigenforms
Definition. F € Ffn, ¥, W) is said to be an eigenform for T(u)
if there exists a constant A (M) such that F(z)]T(p) = Al Fiz).
A natural question arises. In terms of the Fourier expan-
sion, F is an eigenform whenever F(z)|T(u) has a Fourier
coefficient system { A (1) ci(_a;m,q?; A () ci( 8)}. One might
wonder W.hy we do not consider constants Ai(u, _a_.m) which de-
pend on i and m, so an eigenform would have a Fourier coeffi-
cient system { M,a deda ,a) A(H,B) ci(B)} .

Corollary to Theorern 3

Let F have Fourier coefficient system [ci(_a_,m,q); ci(B) ¥,
ir { Ai(“’ ?;m) ci(Qm,q); ?\i(i-l, 8) ci(B)} corresponds to a vector
modular form F’‘€ F(n, ¥, W), then A (1, a) = Aj(p, b) for all i

‘and j and all [ab] which are squares in 1/P .
Proof. Let Glz) = F'(z) -~ l\l(u, a) F(z). Then gl(z, a)=0

hence we are done by Theorem 3, QED
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Now we are ready to investigate the action of the Hecke
operators on the Fourier expansion.

Lemma 4

1) Let KX = and z=x*tyk € H. Then

SR g e il

2) Let (glz, 2_)) = Fla) (5 %) for o eo[n].

Then
gz, a eu ) = o w2y
m
2 S(i’q) .
(Z < (i ‘&qu) S Ys(l’q))
G Uy 0
N AR (LD v
2 A UL /A TS TR R

5 .
o (Ex® )]
S f *
Proof, Prop. 6.3 and the definitions gives 1), The definition of

the vector slash operator and straightforward calculation yields

2). QED
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Theorem 4
For any W € O(z), F(z)|T{1) € E, X, W) and has a

Fourier coefficient system {di(g._m,.q); di( v) } where

1/2
(di(im,q)} = z T(K) p™ () N(K)_I p‘n<(__‘f_) )

(k) b
Elm
2 |s{i,q)
-(C_(a _M_)K_., )
) 1 —mKZ M

and where

- 1/2
= -long em ffp YL
@.(y) = T () N oK) p -—-—) ( .
: ]1 ! (% ((lu\ )(cl KZ))

" Here 1 means sum over all ideals (K) where we choose some

(%)
K |1
generator K. Notice also that the ''vector convention' is being

used, so the above are identities of (ntl)-length vectors.

Proof. F(=)|T{(w =

F(z) z cix 2 «g ?\)) lHlanN(u)_l

13 " omod A
Ki= g €0[ 2]
- g R 2, el 3

kA= | o€ O[ 1]
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Let {g{z, ém)) = F(z)|T(iy1). Lemma 4.2 and Prop. 8.3 show that

1/2
g )= D X0 p’n((-ﬁ‘-—) x'1> N(w!

(K) |l
Kh=u
2s(i,q)
ZC.(a o q) K~ YS(i,Q)
ocmod A nm Kz M
o € O[A]}
/ 2
3 ()
u .
€0 [oa, 5]

) z <B OLk(m)c) (BKZ )
e|————} - el= m x
ocmod A & A

o €0 [A]

The properties of finite character sums show that

8 a, o
Z e<—1ﬂ—>=o if A48
. 8% .
o mod >

N(O) i A|B .

2 N
Let y = £ Then A]B iff K|y . Thus,
A2
glz,a )= 2 X (k) p'n«__‘i_) )N(m'l p (1)
S 3 | 1]

Ki= .




] v

1/2
The diagonal matrices p—n((-l-tl_l) > and pn( K} do not permute
: : U

the Wi(]y | y) terms, so we see that F(z)|T(11) has the desired
Fourier coefficient system, ‘ QED

Corollary to Theorem 4 (hereafter called Cor, 4)

Suppose that F(z)]T(1) = A{u) F(z) and that

F(z)|T(v) = A(v) F(z). Then

e -'\)'1/2
(A (W) c.(W) = p (——) (A (V) . (W) .
ot |v| t .

(n+l i)

1/2

) p“((f:—l)

1
-1
U.

(TET)? c, (1) .

- Proof, 1) Theorem 4 implies that

1/ -
o (__L_i_) )(k(u)c.(v))= Z T0 N(K) ) (C(“—;) :
] o () | AL

K]y, V)

The r:"tght is symmetric in U and v, hence we have 1), To get

2), set v=1 and use Prop. 9.3. - QED
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Definition., F is said to be a normalized vector form if cl(l) =1,

Proposition 17

1) Suppose that F is a non-zero simultaneous eigenform for
all T(u). Then cl(l) # '0.

2) Suppose that F and F’' are normalized eigenforms for
all T(u) with the same eigenvalues, Then F = F';
Proof

1) Supi)ose c-l(l) =0, Then by Cor. 4.2, cl(p) =0 for
every |1, hence one can show that fl(z, Qm) =0 for every m,
By Theorem 3, F =0,

.-2) _VSince they have the same eiéenvalues, F-F'isalsoa

simultane.ous eigenform, The corresponding cl(l) term for
F-F'is 0, hence we are done by 1), QED

Proposition 18

1) Let T be prime. Choose o € O[m] suchthat Tt o,

Then given any [a], there exists A € M(l, a) and B € M(1, é-l)_

such that ((g 1:)) = A(((l) :2))13 .

2) Suppose that F € Efm, ¥, W) has c,(B) =0 whenever

TT‘i'B. Then F =0,

B

6) and

Proof. 1) We need to show that there exists ($

C

Y' 5 ,) of determinant 1 such that
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Theorem 5
1) ILet T be prime and F € F(n, ¥, W). Suppose that there
exists A(m) such that
| n/2

_ L
A(m) ey (1) = (T_Tr_l) e ()

and also that cl(l) cl(B'lT) = cl(B) cl(Tr) for a,ll. 8 with m{8.
Then F(z)!T(TT): AMw) Fz).

2) Suppose that cl(l) cl(u\).) = cl(u) cl(\)) for all (u,v) =1,
Then F is a simultaneous eigenform for all T{u).
Proof. 1) Let Glz) = F(z)|T(m) - A (m) F(z). Then our hypoth-
eses al‘(?ng with Theorem 4 show that dl(B) = 0 whenever TT*I’B .
Prop. lé.Z says that G = 0, hence our result.

2) Theorem 2’ says that the prime Hecke operators generate
the entire Hecke algebra, so it is sufficient to show that F is an
eigenform for T(m) with T prime. If cl(l) = 0, then by hypoth-
uy = 0 for u and hence by Theorem 3, F = 0. There-

_ e_sis .cl(

fore, assume cl(l) # 0. For each prime T, let

— \n/2 cl(ﬂ)

‘ Y
M) = (lUl" cl(l)

Then G(z) = F(z)|T(m) - M) F(z) has dl(B) = 0 whenever T1B,

Prop. 18.2 says that G = 0, hence our result, ~ QED
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m o o\ /o’ B @ B8\ /1 O
m =
( ) < 7 ! ( 2)
0 ™ v' b vy &8 0 m
where the class of any one element, say [Y'], is fixed.

Choose v’ in any desired ideal class such that m{y’ .
Choose & such that v’ @ © 8 = 1 mod m which is possible by
Prop. 1.3. By multiplying the matrices above, one sees that this
determines 8’ = w8 and v = my'. By Prop. 1.2 we can find
o’ and B’ suchthat a’8’-B/y =1, Now 1|8’ so
B’yv’= -1 mod 1t hence Trl B’+80_ 0. Let B=(B'+da_0)/m

m m
and a=Tmoa’+ v’ CLmO'; Direct computation shows that a8 -8y
= 1 and that the matrix equation is satisfied, Prop. 3,3 now
finishes the proof of 1},

2) Let G(z) = F{z) ((TT T:))- sz). Lemma 4,2 and the

0

hypotheses imply that gl(z, g,_m) = 0 for all m, hence by

Theorem 3, G =0, Take a € O[n] with m{o. Then by 1),

F(z)

0 2

1 0
(( )) = F(z)., Lemma 4,2 gives the Fourier coefficients
T

for the left side, and equating coefficients yields the recursion

relation

(e, (8) = p™(m) (e, (8 /)

where ci(B/Trz) =0 if 'ﬂz—l"B . Thus c.(B) =0 for all B,

‘hence one can show that I =0, QED
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IIT. 7 Dirichlet Series

The Dirichlet series are generally derived via the Mellin
transform or via the eigenvalues of Hecke operators. We will
first find Dirichlet series via Mellin transforms and then show
their connection to the ones found via Hecke theory.

Definition, Let F € F(n, ¥, W) have Fourier coefficient system
{ci(ém’ qk; ci(B)} . For each m and each i, define a Dirichle.t

series

’ c.(B)
1

Di(s’ é"m) B s
B€0a_1 8]

l /
where -2. means that we eliminate 8 =0, Set

4]

d
V. (s) —-«f yo W) L
0

Theorem 5
The Dirichlet series associatedto F € F(n, X, W) satisfy

the functional equations

(D,(s,a_)V.(s)) = 0" (k) Xa_) (D.ta-s,2 ) V.a-s)) ,
1 m 1 m m 1
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Proof, TFor convenience, let the vector

cly,a_) = ( Z c.la . ys(i’q))

g€s !

be the "constant term' of f(z, _a_.m).' Recall that Wi(y) dies
exponentially as y goes to infinity, and that the ci(B) are poly-
nomially bounded., This is used implicitly to justify convergence

in the integrals below, Recall that k is the quaternionic basis

element,
8 dy
[ y [y, im) cly, im)] 3
0
N ] 1 co
converges for Re(s) large. Break the integral intof +f and
0 1

' 1
in the first integral replace y by -3-; . Then we get

-5 1 dy
fv [f&/ygim)-c:(-;,slm)]-}-—
1
+ S[f(k. a )-cly,a )]dy
¥y b m Ys 2 Ea
X

Prop. 18 says that f(k/y, im) = hn(yk) ')_((gm) flyk, _@_,_;: ).

Prop. 8.3 says that pn(yk) = yn pn(k). Thus the first integral
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becomes

@

- = -1, (1
/ y " [ann(k) Xla )1k, gm) - c(?, im)]dTY
1 .

<0

- _ -1 -1
=f _Yn ® oK) Xz ) Lilyk, a ) - cly, im)]%
1

+f 7o [ e Rl et a7 - o5 2 )|
, .

Notice that the first integral converges for all s. and that
the second integral converges for Re(s) large. Now we use the

specific form of the constant terms. For any p< 0,

[+=]
pdy -t
_[YYP'
1

Thus for Rel(s) large, the second integral can be evaluated to be

o) 'i(gm)( > efall,a) —3 )

4 €s m n-s+s(,q)
§ =1

+ T ———————————r—p——

(q = (e O 5F s(i,q))

There is an obvious analytic continuation to all s € C with only a

finite number of poles, Thus, all of the integrals above have
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analytic continuations to the entire plane except for these finite
number of poles. Thus we can conclude that when interpreted via

the analytic continuations,

o

s dy n,,—

f y [fyk,a_)-cly,a )] 5 =P k) x(a, )

0

. n-s -1 _ -1, dy
0
Now we put in the Fourier expansions to get

® 4
f—YS : z {c.(B) W.(| Bly) Ez=pn(k)§(g )
0 peofsa_1 * 7 y "

L]

o Z, (c.(8) W_(] 8]y)| &
y ~1, % AR A B

0 peo[sa ]

Consider the integral on the left side, For Re(s) large, every-

thing is absolutely convergént and if we replace y by T we

|81
get that the left hand side becomes

/ , c-i(B) g d '
. o f y Wi(Y) —;L = (Di(s, g_m) Vi(s)) .
\B EO[&_@_m] ISI o .

As we showed above, this can be analytically continued to all s,
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Consider now the integral on the right side. For Re(s) large

negative, everything is absolutely convergent so one gets

(Di(n—s‘, g;) Vi(n- 5)) which also hf;ts an analytic .confinuation.

Putting everything together, we get our result, - QED
Now we use Theorem 2 '_ to define Dirichlet series via

Hecke theory, Let F € F(n, ¥, W, ®) be an eigenform for all

T() with eigenvalues A (M), Take any strictly multiplicative

function v on O(Z), Define

Aev) = D Adviw)

pweo, @ |ul®

By Théprem 27,

-1

. -1 2
Ats, v =TI (1 ) ?\(?T)vs(;n) L N(m) ')éir_f)nv(rr )) .
MEO, (7) | | =
T prime

When F € En, ¥, W, @), Prop, 16 shows that A(-u) =9(-1) A(n),

¥ -y € 0,(Z), then A-p)=® (W) A(n). Thus,

Al) o (M) v

A(s,v)Z% .
b €0(Z) y
-1
. (1 Calm e(m) Am |, Nem L R () v(nz))
() Kl |wjoen

TIprime
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We will now introduce a particular v which will connect
the A (s,v) Dirichlet series with the Di(s’ g._m) Dirichlet series.
Let y be any character on I/P ., Define

1

1
— nti-i) , =\ (@E-1)
b, (10 = @ ¥ (W (_E—>2 (-E—)z
| 1] 1]

Then L|Ji is a totally multiplicative function. Recall that under
very mild assumptions on the W-system., we have already re-
marked that all ci(l) # 0, and in fact if Ci(l) =0 then we can
assume that A{M) =0, Thus, assume that Ci(l) #0 and use
Cor. 4.2 to obtain

1 z Ci(U) LP(H)
2c. (1)
1 M

As, QJi) =

One; can now verify the functional equation
(ci(1)$(a) Als, ¥,) V. (s)) = 0™ )
© e, (1) (X)(8) Af-s, (xmi) V. (n-s))

where (x¥){u) = x(u) ¥(y). We also get an Euler product
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Als, ) = ﬂ

{7) prime

-1

. c.(m ¢ (m) . N(Tl')-l % () tp(-nz) ( - >n+2-21
e (1) |m|® R B

111, 8 Principal Theorem

One might expect that F{n, ¥, W) has a basis of simul-
taneous vector eig;anforms of the Hecke operators. I will not show
this, but the interested reader is urged to see Stark [10] for a
discussion of the needed fundamental domains, and then Hermann
[5] for an indication of how to form the Petersson inner product,
Assuming this, however, it is reasonable to ask if the principal

component f(z, g,_l) of a simultaneous eigenform F(z) deter-

- mines the entire vector form. The following theorem will give

sufficient conditions for this to be true.

Recall the notation of Chapter 2, Section 1. Let
B 1reeea Bl be a basis for the ideal class group, with N, equal
the order of [BS]'. As shown by Dirichlet, we may assume that
each B < is prime, This is convenient but not necessary; I

actually only require that they be relatively prime,
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By Theorem 2/ , the prime Hecke operators generate the
entire Hecke a.lgebra..' Recall that the Hecke operator T(m) is

actually an h-length vector of matrix operators T[ ](p).' If

[=A
—m

m, and T, aretwo primes, then _F(z)[T(-rrl) T(m,) is actually

2

the vector form

(f(z, 2™ | Ta g T[émnz](wz)) .

By Cor. 2, T(rrl) T(m,) = T('rrz). T(TTl) so one concludes that

2
flz,a m TTZ)[ T[Q _l_rlﬂ_z]('rrl) T[imﬂz](-ﬂz)
~ - f(z, imﬁl T[Z) [ T[Q-_mﬂ'l 2](TT2) T[émﬁl](ﬂl)

for each m, Notice that one can easily determine the appropriate
indices for the T{m) components from the definition of the slash
operator. Thus it should not be confusing to adopt the following

© simplifying notation: define f(z, _a_m)1'r(-rrl) T(m,) to be

fa, 2, )| T, (M) Ty (mp) Let £z, 2 )|T(m" be
. -m [Em 1'|'1 ]
defined by
T - L3 ] T °
f(z,ém)IT[é:m](ﬂ) . TT_l]w) - TTr_ll(w)
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In other words, we will drop all of the subscripts from the compo-
nenfs of t?he Hecke operators., It should be clear to the reader
" whether T(m) refers to the vector Hecke Opera.tOI: or to a compo-

nent of the Hecke operator. Notice that

£(z, _z;._m)lT(wl) T(m,) = £lz, g_m)lT(Trz) T{m,)

according to our discussion above.
Theorem 6

Let f(z, a,) be an (n-i-l)-:length vector of complex valued

1

fanctions for z € H, Assume that f satisfies the following

hypotheses.

1) (=, _@l)lA = f(z,a ) for all A € SL(2, O(K)).

1
2) For each s=1,2,...,r, there exists L(BS) #0 such that

N
s

f(z,gl)lT(Bs) = L(B ) flz, a )
PI P2 P
3) If m is prime such that [TTBl BZ oo srr]_ is principal,
then there exists L{m such that |
Py 'PZ P 7
fz, 2 )| T(B;) | T(B,) " -+ T(B,) = T(m = L{m) flz, 2,) .

Then there exists a vector eigenform F € F(n) with first
component f{z, _§._1). Furthermore, if F € Efn, ¥X) and if f(z, _@_1)

has a Fourier expansion in terms of a W-system, then
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F € Ffm, x,W).
l/Ns
Proof, Let )\(BS) = L(BS) where we fix some branch of the

Nth root, with N = 2,c,m. (NI,N yoee, N ). Define
2 T

' . -F Pl Pr
£z; P, Pyyees, P 7_T MB ) °flz, 2 )|T(B) "+ T(B)
Suppose that we replace any Pt by Pt" = Pt + pN_, where p € Z.

Then using commutativity,

, r -P -pN
. : ’ _ s . t
f(zs Pl,non’Pt,n--,Pr)'_' <Sn ?\'(BS) ) K(Bt)

pNt P P

M I r
¢ f(z,g;l) T(St) - T(B)) '-°T(8r)

=f(z;P1,P Pr)’

2,0..,

using hypothesis 2). We conclude that f(z; Pl’ .o "Pr) is well-

defined for P mod N , s=1,2,,,.,7, Set f(z,a ) =
s 8 _ m

: 1 Pl P
flz; P ,P P} where [a ]~ [B ser B 1':| .
_ r : —m 1 T
Define F{z) = (i(z, _Egm)). I claim that F is the desired
eigenform, One can show using Prop. 2.1 and the definition of

vector matrix multiplication that F(z)|A = F(z) for all A € M,

Thus F € F(r). Now for any t=1,2,...,r,
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flz,a )| T(B) =6 Pp,...,P )|T(B

R

_ P 41 P
e T(B) T eeeT(B ) T

* -P P,
i MB) Tz, 2,){T(8))
s=1
=A(B) £(z; P} ..., P+1, ..., P )
_ -1
= MB) £z, 2 B) .

Thus F(z)lT(Bt) = J\(Bt) F{z). Suppose T is prime with

Q

1 Qr ’ .
B 1 Br principal. Then

[~

| i} N
t,a )|T(m = J[ A8 )

) ml s=1 S

r P +Q

M ae) = s.
s=1 s

T

M e

1

So--

Q

.T(Bl) looiT

QI‘
B ) T(n)T(Bl)
T

f
4

v -P +0

s S ‘
=am- 1 A ) £z, )| T(8))

s=1

..]_)

M) flz, a2 ™
Im

where

-

® £(z,2 )| T(B)

0

P

1 P

o T(B_) T T(m)

s f(z,_a;l)

-Q

Amr) = L{m) ﬂ M(B ) S

s=1
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Thus, F(z)|T(m) = A(mw) F(z), for all prime T, henée F is a
si aultaneous eigenform for all the Hecke operators.
Suppose that F € F(n, x) and f(z, '?"l) has a W-system

{Ys @, q); Wi(y)} . One can trace through the proof of Theorem 4

P P

and verify that f(z, gl)‘T(Bl) l... T(Br} T has a Fourier ex-

pansion with the same W-system, and so one can conclude that
FECEmMm, x,W). | | QED
Remark. In the beéinning of the proof, we fixed an arbitrafy Nth
root, Thus, there are actually N different F_(z) corresponding
to f(z,.-g._l), one for each choice of the root, If F € Fn, X),

changing the root corresponds to changing the character X.-
. b B .
‘Remark, If |1B R B - r] is principal, one can verify that

P P

the principal component of T(Bl) L. T(Br) fT(m) is a sum

of matrices from GL{2, O(K)), that is, all of whose entries are
. principal. See Chapter II Section 6 for an example of this. Thus,
the hypotheses of Theorem 6 may be stated without using ideal

numbers,




IV,1 Eisenstein Series

Let n Dbe an even integer, and s a complex variable, In

the classical case one considers Eisenstein series

/
E(z,s) = z {cz + d)—n <__._V...__._)

c,d€Z ]cz+dl2

In analogy to this, we define Eisenstein series on the quaternim:'),ic
upper half space, Fix an imaginary quadratic field K = 0 (,/d)
with discriminant 4 < 0, d #-3,-4. Let I/P be the ideal class
group with representatives a, = (1), BoseessBy
Definition., For z € H and s € € and any ideal classes

[gm] ,['g_p] , define a quaternionic Eisenstein series of weight n

by
y ) .
Elz,sia_,2 )~ 2 0" Mz + V) (——Ym—§>
P ueola ] |z + v
v EO
[ép]

4
where L means that we eliminate KL= v =0,
b :
Consider the action of I'(g) on E(z,s;a_,a_ ). Recall
a m° TP
that addition of ideal numbers is only defined within a given Ofcl,
hence this action will be defined only if [1_3_] = [g_mg;I g]. Let

(0‘ B) € T2 (€). Then one finds that
Yy & a




Elz,sia_, gn) l(a B) = p"n(ﬁul/z(v:z+ 5}

D e e e oM P et vy)a

n€oia |

ve€Oo[a |

| 5

+ (uB + vo)]) - ( AR 2)-
|(na+ vy)z + (pB+ va)|

Suppose §_ =1,

Proposition 19

a B a
It €= , then
(Y y aa_ 2l |
m—p
(Ofa ] Ofa 1) (a B) = (O[la_al, Ola a-l]) |
—Im ? ""p .v 6 =“m— H .....p_... L]

Proof. Let er[.@.m], v EO['%P]' Then aptyv € O[_;a_,m_@,_]
and Bu+dv € O[_@_P_@._l] . Thus, the right side of the expres-
sion above contains the left side. Since the determinant is one,
we can invert the matrix, and get the re.ver-sé inclusion, hence
equality, ' QED

Proposition 20

For AC€ I"?‘ we have

-1
a a a
==m=p
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. 1
E(z,sia _,2 )|A=Bl,s52 a,a a ).
m-Tp m p
: . /o B
Proof. We have already shown that if A = (Y 6) , then
Elz,sia_,a )|A= 2 o Mlpat vyz + (WB+ V)
P n€Ofa ]
“m
v €0{a ]

| Treeswemrversos.)
Huatvy)z + (UB+ v&)lz

and now Prop, 19 implies the desired result, QED

Define a vector quaternionic Eisenstein series F(z,s) by

Fla,s) = Eflz,s52 , 2,

))m=1,2,...,h *

As in the last chapter, we will usually not wr.i’ce the indices
m=1,2,...,h, Prop. 20 implies that F(z,s)|A = F(z,s) for
A EM,
Let X be a character on the.ideal class group..
Definition. The vector quatérnionic Eisenstein series of weight n

and character ¥ is defined by
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.
¥z, s, ¥) :% z ¥(a )F(z,s)|C(a )
p=1 P
h
- ’ilx_p21XBp) Bla,sia -2, 2) ’

m=1,2,...,h
Remark, In terms of the definition of a vector meodular form
given in Chapter III, F(z,s, X) is actually (atl) .different vector
forms,r one form corresponding to each columm of F(z,s, x), It
will be convenient for us to consider the entire matrix at once,
rather than a single column, The reader should be aware, how-
ever, that one should actually be viewing each column as a sepa-
ré.te modular fqrm.'

Remark, Omne can easily; verify that
F(z,s, x)|Cla) = x () F(z,s, x)
and that

Fio,s, 0 |(5 )= 1M Pl 00

so that each column of F belongs to Ff{n, ¥,®) where © is the
trovial character if n = 0{4) and the "signum'" character if

'_n =2(4).
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Remark, Usually one defines Eisenstein series with the added

condition that (u, v) = 1, If we define

N 1 1 . s
Flays, 02 )=s 2 (vl (uz+v)<———”--—)
m by Com) luz+ v|2
tu/vl=la ]
(n, ) =1

then one can show that

F(Z’ S, X’ ém) = F(ngs ‘X.’ _Q’,m) * L(S, X)
where Lf(s, ¥) is an obvious diagonal matrix to be defined below,

IV,2 Fourier Expansion of Eisenstein Series

‘fo find the Fourier expansion of th?. classical Eisenstein
series, one uses the Poisson summation formula. We need a
multi-dimensional version which I adopt from Stark {107,

Consider R? with the usual inner product, and take a
| complete lattice L. Let d.l =d 7\71 d 7\2 cee d ?\q be thg usua.l_

A

Lebesgue measure with A= (X ?\q). Let d(L) be the

1’ 2’ @ "‘ 4
volume of the fundamental parallelopiped. Define the dual lattice
L'by L'= (MerYr/eLcz} .

Theorem 7A

Take f € Cz ®Y) dying ''rapidly' at infinity, Then
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1 -27mi A 2 :
z £(A = q Z ’—/‘ un[f(?\)e ai .

r
AEL AeEL R4

In our case, we will apply this to the lattice O [QP] in €,
Take the usual isomorphism of € with R® via atbhier {a,b).
Let trfx) = x + X as before. One can verify that if = = a +bi and
y = ¢ +di then (a,b)} « {c,d) = tr(x¥). One can also show that if
y = cx for c € C, then dy = [clzdx.

By definition, the lattice dual to O(K) under the trace is

: - -1
the inverse different (8) which we can write as 8 ~ . O[&§].

s
Now O(K) = O(K) so 6_1 . O[ 8] is also the dual lattice with
respect to the inner product of Rz . From this it follows that the
lattice dual to O [gp] under the {race is 6-1 . O] égl;l] and the
lattice dual under the inner product is the complex conjugate of

this, Using this, we can rephrase Theorem 7A,

—~ Theorem TA

"For f€ c? (C) dying ''rapidly' at infinity,
1 |
Z V) = No 2 1 [ﬁf(v) e (”YEL)d" .
€0 : AEO[5
[2.)] Lea,] ¢

For the rest of this section, let f be a short notation for

éf Also, 2 means that we eliminate the obvious zero term,
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Theorem 8

E(z,s;a_,a_)= z p vy X
S SNE X |v1%°
P
1 -1 2, \~8 . ! -n N{)
"N /P +r)(|u]”+1) ~ du 2 (u)l [25

HEO[a ]

, .
+ z “L—[p-n(u+k)(|u[2+ 1) % e (-uy 1) du
-1, N(8) 5
Véohﬂgp]

: 2s &
piv | u |
n€ola 1]
Proof
’ s
E(z,s;a_,a_) = pn(\))<yz>
- P veofa ] | vl
P
F s
+ p (uz‘i'\))( z 2)
u€ola 1 v€O[a | - \|uz+v]

We apply Theorem 7 to the inner sum.
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4 8
z p-n(uz + \)) (..__Y___._Z)

ve€Oola ] luz + v

1 -n y L
=Ty B o {uzt V) (—-———————~> e{~- vA/58) dv ,
N(3) 7\eo[aé}_;] f | s + vlz

In the integral, substitute u = (ux *+ w/uy. The integral equals

s
fp'n(w(u*-k))( z |2> s e(-py un/s) e (x if})
) .

luyltk

* N{uy) yz du
= fp_n(u+k)(lu[2+ 1)“ZS e (-uy %) du

- "p-n(i.l)' N(H) ‘ MI-Zs Y2-—11--5 N

Putting this into our original expression and separating out the

A =0 term, we get

! s
Ef{z,s;2 ,a )= z 0 ) Y
SR vella ] V1%
! 1 -n, - 2, \=8 p ™ () N(w) 2-n-s
+ T [¢ (e du CRAALL L
&) 28
ueofa ] | bl

/
: 1 - 2 -
D T

ue€ola 1 1€0[6a ]
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-n

e (ruy B2)aw . £DGINW) 2o (i)

12 k2

-1
Now let v= A in the last summation so that v € Of E@mgp 1.

. After switching summation signs,- we get the desired result, QED

Definition, Define an "L-series" Lis, x) by

’ -1
L, x) = D XV ool
v €0(Z) | vi

Define a "'divisor function' D(v, s, X) by

Z x () p (W N{u)

2s
wiv |
b € 0(z)

D{v,s, x} = NA{v)

Set
W(vy,s) S f,O-n(u +k)(|u]2+ 1)°% e (-u \)_y) du ,

N{( %)

Gorollary to Theorem 8

Let F(z,s, x) = (F(z,s, x,-_a;m))- be the vector Eisenstein -
series defined before, Then we have a Fourier expansion
1 s
F(”‘,s: X, 2 ) :"ﬂ“l’(sa X)Y

1 2‘—n-s
o _ : .
h x{am) W,(O’S) Lis-1, x) v
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7 .
+.i11_ Z ¥ (8) W(vy, s) D(v, s, X)y

2-n-s (
e
v€0[sa ]

Proof, Put the Fourier expansion of Theorem 8 info

h
: z . a2 |
E ; .
hP:1 x(ap) {z,s5 2 ,ap)

IV.3 Action of the Hecke Operators

Lemma 5

Let 1 be prime, Then

3t

&

).

..-..P _1
[imép ]
+ 1/2 1
=E(z,s;a2_,a_1) l'leS n/2 Nl / ) N{m
-1 -g+n/2 - 1/2
+ E(z,s;a T ,éo)-llsn/ T
Proof
E{z,s;a ., 2 )|T 1 ()
_ 2,2,
: 1'r-1 m 0
=E(z,8; a a ) C )+ Z
’ 'Tp ﬂ‘lg_ _a_,_"l (0 1 o mod 17
R c€O0[a " a_ ]

N(m) .~

QED
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 Prop. 20 along with the definition of the slash operator shows that

this becomes

[ s
= Z p_n(ﬁ_llz(nuz-}'\)))(__,ml_.;)

uEO[émﬂ"l] [z + v
\)EOLa_,Pﬂ]
o ,

T > oM P s+ tuo v

G'moc%rr ‘1 €0a_ ]
0€0[a""a m] vEO[a
L.'m"p ! [“p

| o
. ( v 2) e Nem
o ]uz"‘(uc'*\{ﬂ)l |

Break the _secoﬁd sum into a sum over t|d and a sum of mi U,
For a fixed m{u, withall ocmod m andall v € O[gp], we find
that MO T vr gives every element of O [gp'rr] . Thus we replace
1o + v by the variable v to get |
- . _ - . X ) ' _
= z 1 p"n(rruz +v) (——“L-——'E) ,lTT|S+n/z N(‘l‘l’)_l

weola ] Tz + v
VEOLELPW]

. PI"(Tr1 /2)




S
+ D S (-J--F) )52 22y N
A

T fuz *
B E€O0[a ]
vEO[.@-Pﬂ]
[ .
+ Z Z p Muz + (Lot vm))
_ Gmc;d 1T 'n‘l i 1
Geol-émip'rr] uiohmrr
- o
v [E-.P]
: X s .
. ( v 2) . l“'ls+n/2 F)1‘3.(1_'_1/2)1\1(_‘_” 1 '
|uz + (po + vm)|

The first two sums combine to become

stn/2 o2 1/2

E(esia ,am ] (rt /%) N(m ™
m”Tp

In the final sum, | M so replace | by U where now
-1

ueEo ['E""'m 7 ~]. This last term now becomes

{

) o M (mluz + (uo+ ) ])
o mod pEO[_a;mTr' ] : '

€0 |
veola 1
. ) =] .
: ( e e € oS BT ES
(7] luz+ (ot v)|7/

.
For a fixed o, (Y, V) (0 rir) = {u, Bo + v), so by Prop. 19,
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Lo+ v, and noting that the sum over omod m is trivial, we see

that the final sum becomes

! s .
= N(1) z o Mz + ) <—-L-—-—) | l—S+n/2

n€ola n'] huz + v|?
o)
VE [é-.p]
. D-n(ﬂllz) N(rr)“'-L
- El,sa_m,a) v SR o %
m P

which gives the desired result, , QED
Theorem 9

“For any u € O(Z),

stn/2 n, 1/2

F(z,s,x)[T(u)=F(z,s,x) D(H,S,X)|M| P (n )N(H?“I

Proof, TIirst we will show that it is true for W = 7 prime, and
then for prime powers, and finally for all \,.

Let 1 be prime. Then

h
F(Z,.S, X:.E."_m)lTl‘ém]( :%pZIX(a )E(Z 8; 2 _@_ + & )ITL ]

h :
N .-t o
"h Z X(Tr)x(rrg_p) E(Z,s,_a_mn a_m, ap”)




= F(z, S,-gmwnl) . D(m, s, ) Irrls+n/2 pn(nllz) N(m !

where we have used Lemma 5 and skipped much of the tedious
.calcul.ation.

| Now we will use Theorem 2’ to find the action of the rest
of chke opera.tors.' For prime powers, we use induction, If we
set A (9} to be the matrix eigenvalue for T('rrq), then we want

" to show that
+n/2 -1
nnd) = p(nd s, %) | 735V P2 o292 N9

We have shown the result for g = 1, Assume it is true for q - 1,

g =2, Then Theorem 2’ implies that

Am AT Y = amd) N D R e d?)

so using our inductive hypothesis and some algebraic manipulations,

‘we find that
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\ (19 | ﬁql-s—nlz p-n(ﬂq/Z) N(rd)
g-1 - =25 ~n
= D(m,s,x) D{n" ,s,%x)-Xm|m] p {m N(m
D(nqaz,s, ) .

We need to show that the right hand side is D(Trq, s, X). Tedious
but trivial algebraic manipulation paralleling that in the proof of
Theorem 2 establishes this fact, which then gives the desired
result for prime powers, | |

Consider now the general case, If (u,v) =1, then
kr(p) A(v) = A (uv) so we need to show that D{u, s, x) D(v,s,x)
= D(p\),h s, }.(). This is easily verified. Now we can consider any
U, v € O(Z) by considering each prime factor separately, and

then combining them using our last statement to show that

-1 .
N(pv) =Dy, s, ) 1y 222 Prunt® nw™ . QED

bttty

' Remark. Once again recall that in terms of the last chapter,
F(z,s,¥) is actually (ntl) different eigenforms, which is why the
”eigénvalue” for F(z,s,X) is actually an (ntl) X (n+l) diagonal
matrix, The entries of this matrix are easily calculated via

Prop. 9.3.
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t

Remark., The "eigenvalue' A{u) may be rewritten as

Zsl -stn/2 -n, 1/2
| [l P (n

2  (8) p™(e) N(o) T |0 )

8u 5
6 €0(2Z)

The term in brackets looks remarkably similar to the divisor func-
-1
tion, namely on"l(q) = L , which appears in the eigen-
tla

values of the classical Eisenstein series,

IV.4 Dirichiet Series Associated to Eisenstein Series

In this section, I will not repeat the proofs of Chapter III
Section 7; instead, I will specify what the results of that section
yiéld when. applied to the quaternionic Eisenstein serie s;,

We begin with the Mellin transfoi'm; Unfortunatély, I have
used the variable s in the Eisenstein series, so I will take the
Mellin transform wiith respect to the complex variable r . The

proof of Theorem 5 and Corollary 8 show that

, |
f y ['%{ z % (8) W(vy, s) D(v, s, x)vz—n-s] 3y
‘ vEO[ﬁgm] y

F
="K T )f Vn"r[‘:j -Z_-l x(8)
0 v €0[sa 1
: - m
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' 2-s5-n | d
e ¢ W(\)Ys S) D(\),S, X)y ° n]—fy—' *

| Recall that
! ﬂ n \)-1 VY —
Wovy. ) =3y J) P (I_asl ) M‘)
. : C

. (lu‘2+1)-8"n e (—y|§lu) du .

We substitute vy [% for y so that the Mellin transforms

bec_ome
.Zr 1 [ ri2-s-n /n lllnl- (l)_)ﬁ_k
co EN(s)| 7 PAUTE \B
V. [E{gm] 0 s |
.. 2+i -5=11 ( )d y_s+n-r-2 D( ) dy-
(ol +17*™ eleymrau -+ [ VoS X) 5
Y
n Eva -~
=p (k}x@_ ) : f v
m’ | e orsg -1y PN A
m
N . ) -7 . - “1 E . 2 . .—S-n. R
7 pn(l'};*l (%}")E_'k) (Juf"+1) e(-yu) du
_ T«
2-r=-8
. ay
’ l?' D(\)’ S, X)__,;;‘ .

Now will consider each entry of this matrix equation
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-1
semarately, Onpe can verify as in Prop. 9.1 that o (IXI (.\.é_)ﬁ_k)

th .
is a matrix whose ij  entry is of the form

e @

where Pij (u, @) is a polynomial with rational integer coefficients,

ntz-i-j
P . (u,1q)
13

One can use Prop. 9.2 to show that the jth diagonal entry of

D{v, s,%) is

~28-2n

ntlei G-l
SRR TE R VY N(u)

(D(v, s, %)), = T(v) Z x(u)

plv
n€0(z)

‘For any i,j = 1,2,...,ntl, define a Dirichlet series

nt2-i~j

Dij(r,s,g_m, ¥} = z, (_L)

lvls+n«2-r
[ vl
v €0[sa ]

. (D(v, 8, X))

Let vij (r,s) be defined byl

i s rt2-s5-n ,%®
{8 t4j-2-n ! b I . ri2-s-n
V;.(r,8) = hN(3) y
\Is | i

: - 2 -s-;L dy
. ﬂpij(u,u)(lul +1) e(-yu)du.-—{rm .
- C :
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With these definitions, we get a matrix functional equation
n —_
YV =
(D,.(r, 5,2 2 %) Vi, 8)) = 070 Xla )

' -1
(Dij o-v,s,2_, %) Vij n-r,s)) .

We can also define a Dirichlet series using the Hecke
eigenvalues, Theorem 9 shows that the eigenvalue for T(u) has

jth diagonal entry

S | . 1 .
sh/z -1 20 0D

M) = (DU, s, ), 1] (T v

Let ¢ be a character on U, with © the trivial character when

n =0 mod 4, and ¢ the non-trivial "signum' character when

n =2 mod4., Take U to be any character of the ideal class group.

Set

| nf2+l-1
b, (1) = 9 () @ (n) (—‘f—) .
]

Then

ES cﬁ(u)¢(u)

1
A (r,s,x, ¥.) ==
] Yo% ueo@ el

h .
&
= .L]J_é__)_ 21 Lp(gm)-[)ij(r,s,gm, x)
m—




i02.

- T p . ] (m ¢ (m) + N(m™ T 9 ()
. ' A 2r-n
() prime jml b
. (W )n+2(1-i) -1
b
wheré
n+2 ~i-j |
e, (= (- | ™72 (D, s, %)),
1 I | -

for any [ € O(Z), The functional equation becomes
(B (8) A (e, 5,5, 4,) Vysle,8)) = p70)

e (XY A lomey s, X, (X)) Vislem, 8))

IV,.5 Explicit Evaluation to Get Bessel Functions

We are now interested in explicitly calculating the matrix
of functions W{(vy,s). The interested reader is urged to see
. Patterson-Goldfeld [8] for a very slick method of evaluation, This
section uses a rore difect approach which relies oﬂy on a special
functions table, such as Gradshteyn-Ryzhik [3].

First, we perform a series of iransformations to simplify

the integrals., Recall that
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: 1 . 5 _ -2 mitr (uy —\g)—)
Wwy,s) =3y ] e Yat k) (|u]“+1) % e du .
T

By Prop., 8, p —(u+k) = pn(ﬁ-k)(lulz +1)™, Let u be replaced

2
by I%I (%i) u., This transformation leaves |u} and du un-
changed. Replace 4y |%)—1 by a new variable w. The integral

now becomes

1 | -_1 v ' | 2, .,-8-n f%tr(wu)
—N—(g)" pn(l%l (g)ﬁ-k)(lul +1) e du .
¢

By Prop. 9.1, pn(l-\é—l (—-\é—)ﬁ - k) is a matrix whose entries are

polynomials in U and wu with coefficients involving power of

|-\é-| (%) . In any given case, one can easily calculate these

polynomials. We can now evaluate any entry of W(vy,s) provided

that we can evaluate integrals of the form

-

P, P, - 2 tr (wu)
j]’u 132 (Iu‘z'l'l)nsun e ° du

C

for integral powers P, and P, .

Tet wu=a+ib so tru=2a and du=da db, Then
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P, P
u u 2 is a polynomial in a and b with rational integer coeffi-

cients, Again we conclude that one can evaluate the above integral

provided that one can evaluate

[22] [++]
‘ -8-n  _:
f [ Ppda b+ 1) e "V qb da
-0 =0 ’

' b
for rational integers p and g, Set = —F=—== , Then this
. ,/ az
integral becomes '
.[ c
~ OO

C —_—
o 1
_ —{gqt+l)-s~-n .

f AP (% +1)° e TV a4 -

- R

+1
chc
( 2+ )s+n

Consider the second integral, If g is odd, then

4

sin

> is an odd function, so the integral evaluates to zero.
{(c +1) '

Thus we may let q = 2g for some integral ¢, Now we find that

cZq d

2 I —c _ is the beta function, which evaluates to
2 gn ?

0 (c t1)

I’(q +%) r (s +n—q.-%)
I'(s tn) *

Now we consider the remaining integral,
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o , 1
. qt=-s=-n _
/ poiwa 2, 972 4

-

Replace e = by cos wa +1i sin wa. Suppose that p is even,

; 2 _
say p = 2p. Then a P sin wa is an odd function so its contribu-
tion to the integral is zero, Consider

o

] azP cos wa da
-a-1 .
(pE+1ystmma-l/z

2 2 ' :
We replace a P by {{a +1) - 1]P so that the integral becomes a
finite sum of integrals
o0

[ cos wa da
-vt+1
(a2+1)s+nv /2

for v rational integral, Fortunately, Gradshteyn-Ryzhik [3] con-

tain this integral in their section on Bessel functions. Specifically,

@ 2Ws+n-v I‘(i)
cos wa da _ 2 K (w)
.2 sin-v+1/2 stn-v 1 stn-v

where K is the K-Bessel function,

We are left with the case of p odd, say p =2t + 1, Then

af cos wa is an odd function, so its contribution to the integral is
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2t+1 2
27F - affa +1) - 1]t so we need only

zero, We againlet a® =
evaluate terms of the form
co

; f a sin wa da
-v+1
(a2+1)s4n v /2

for v rational integral, Applying the chain rule and using the

identity guoted above, one can show that

@ . . - 1
. 25 wS By r(—)
if a sin wa da - 2 K (w)
w1/ - —tr- .
J (a2+1)s+n vi1l/2 2s+n Vo (s+n—-v +%) stn-v-1

Now we put together all of our results. We find that the
originalA matrix W(vy, s) has entries which are finite sums of
terms of the form

sm-t

T W :
- K tw) .
.58 m-t I (s-n) stn-q

~ Here q and t are rational integers. The coeifficients of the sums

are rational function of s,
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IV, 6 Example of W(vy,s) when n =2

Set n=2 andlet v = I%’"[ (-:Si) for some v E€O(Z). We

will explicitly find W{(vy, s). FirstIlist several useful equations,

vzﬁz -2vua 1
olviE-k) = | va  Jul?-1 - | .
1 2vu Trzuz

For any p such that the following converge,

/m cos wa da :ZWP F(_;-) K (w)
(2+l)p+1/2 5P F(p +%)

f a sin wa da _ 2w’ F(%—)
e

2, pt1/2 - p r(er._l_) P-

[a cos wa da . zwp“l T(%.) K ( ZWP r(%) w)

. p+1/z‘zplr(P_%) P_IW)—ZPT(p+%)Kp(
" e E)r(em-3)
(C2+1)s+n - I'(s+n)

1
8

) -

T'(s tn)

-‘ (CZ +1)s+n
(=]

If we let u=a t+ib, then uz = 2% + 2iab - b2 . Also, the




108,

K-Bessel functions satisfy the recursion relation

wK

, = M
P"l(W) - WKP_I_I\W) = «2p KP(W) .

Using these equations, one can verify that

i .
2 2 cgem T3 tT (wu) _ z_st--Ln- 1
u (|ul™+1) e du =-—3 L\
v 2 M(stn) °
i
f/ﬂ‘lulzﬂf‘“"“ e
- : .2 T{stn) °

i
- tr st-1
2 -s-n 2 o) _2Tw n
(Ju|"+1) " 7 e du = K tw) .
. sin-1 stn~1
c 2 T (s1n)

' , Y Sy ey

Now let w—4'n'y]6|andv |6| (6) . Then
2 Ws-i'n-l

W(vy,s) = ul .
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IV, 7 Differential Equations for Weight One

We have only dealt with even weights so that we could avoid
multiplier systems, Nevertheless, we will now consider a weight

one quaternionic-valued Eisenstein series, defined by

‘ 7 - .1 8
E(z,s52 ,a ,M)= Z M(y, 8){yz * 8} <__X___2>
P yeola,) lvz + 6]

5€0[a_]

where M is a suitable multiplier system. I will not need M
explicitly. The interested reader may see Goldfeld [2]. We follow
a paper of Maass [6] to establish the following theorem.

Theorem. 10

Let z € H with z =u +iv tky, with u,v,y € R, Then

2 2 2

2/ 0 2 0 0 ) 2

’V< N z)’LkY(au“av)"Ls - s
ou ov oy

» [ly= +75)"1 y vzt f”?l-zs] =0

for any v,8 €C., E_(z,s;a_, a_, M) satisfies the same
i m P
differential equation for any m,p, M,

Proof. The theorem follows from straightforward but laborious

calculation, One can show the following equations:
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— A
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~2(s+1){(| '\(lzu +Re ys) A 572

2 — ~s-2
“2(s+ 1) v|"v +Im ¥5) A s

2y |y [P +1) A7572

= 2(s+1) |y |2 A5 4 a(st 1)(sH2)

~5-3

-2
c (IylPutRe T5)° A
2  ~s-2
= -2(s+1) Iy |© A7°77 + 4(st1)(sH2)
2 -5-3

(y1?v+m 76 A

= 2(s+1) |y |2 AaT572

9 - —
——— + =
du (YZ 8) Y

9 r— -
-~ + — .3
ov (yz +38) Ly

§ — —
-é-;-(yz-!-é)— kY.

+ 4(s+1)(s+2){(] vlz y)z A;S_

3
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One can show that
— 2 —_ Y 2 - 2 —
(v e+ Re ¥8) - i¥(y| v+Imys)-ky|v| ¥
2 T :
= {y]” (ya + &} and also that
2 — A2 —__ .2 2 2 2
(|v)2u+Re 76° + (|y [P + I 7812 + (|y|° 9 = [v]% 4 .

-1 r2g  mmm——— -s-1
Now (yz * &) yslyz+6l S=(yz+6)ySAs . Thus

2 2 2v.
———— -g=1
(82+82+32> ((yz+6)ySAS }
du av dy

2
— 8 ,-s-1 e 9 -g=
=2yys-—auA_S + (yz+6)ysa—2—As
u

1

s 8  -s-1 —_— 5 82. -g-
+2(-iy) y oA tlyzt )y —5 A
ov

1

| s -s5-1

— -1 - - 3
+2(—k'y)(sy's } A +2{-kV)} vy E A

s-1

— 522 -s- ——  s-19
+(yz+6)s(s-1)y°2A t2(yz t §)sy" By &

.

—_— —g-1

t e )yt AT
9y

One can now verify that when we put in the appropriate results from

above, we getl
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- 417 ( 4P utRe 76) i (|4[Pv + I T5) - KTy lv|2]

-2 1 -5-1

sty ATPTE H2(-kT) sy" T A

§=2

|

+ (yz + é)ys {~-6(st1) ly{z A

F 2t )|y ]2yS 4t s42) [(|v|ZutRe 76)7 4 (|y]|%v +Im 7 8)°

2 .2 -3=-3
+ (y|"y)" ] A
F e T8 sle-1) y5 2 a™s!

+2(yz T 8) sys"l[—Zy |Y12 (s+1) A"S"z]

- Now one uses the results mentioned above along with the following
identity to .simplify everything:
~4(s+1) - 6(sH1) + 4(s+1)(s+2) - 45 (s+1)
= -2(s+1)
The above expression now becomes
= -2(yz + 8) |y lz(s+1)ys A% L kTsy® Tt A
5-2 ,-s-1

+ (yz+ 8)s(s-1l}y A .

Similarly, one can verify that
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-s-1 -1

& .8\ ;LS . _ 8 ,-S
(8u+13v') [(vz+8)y A~ 1=2Yyy A

- 2(ya T o)y s t) (|y]Pu+ Re 75) A777C

- 2i(yz + 6)ys(s+1)(lyizv +Im 7 8) ATS"2

One can show that klylzy = vlyz + 8)
2 — . 2 -
- (yl"utRe ¥8) ~i{|y| v+ Im ¥s) ,

Using this along with A= (yz T 8){(yz + 8) shows that the equation

.becomes
g BN g s ,ms-l,  __ s ,-s-1
<8u+18v) vzt 8)y A ]=-2v¥sy A .
' e +1 -5~
+ 2k iy[z(-yz Fa)s+1)yS AT 2,

Now one can put all the terms together and can verify that

2 2 2\
2f{ 8 8 o) 9 8 2
- + + ~ | -+ —F 1 + - -g=-
4 (,\ gty gty v S} [('Yz+6) yoA™® 1]
=0 .
“Since E.(z,s;a a , M) is a linear sum of such terms, it follows
1 m’ <p ?

that it satisfies the same differential equation. QED

In analogy with our previous results, one might suspect that

E1 has a Fourier expansion consisting of terms like
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B (s [5]y) < (F)

for some function B. If we put this term into our differential

equation, and if we let w =4 I%l y as before, then

2
B+ w2+kwi1[(i) i+s°-s) Blw) = 0 .
o’ 5 145

One might hope that B would be the sum of Bessel func-
tions, s.ay B{w) = Bl(w) +kB2(W), Unfortunately, a minus sign
which arises in commuting quaternions prevents this from happen-
ing. This is consistent with the results of the last sections, where
v;re'coulcrl_have shown that the matrix of Bessel functions arising

from

_i tr (wu)

_1\'1%%7],[[“"3“1‘)3 du
1

is (up to scalar factors) the matrix

)

tn-2 (w)

iv K K
v s stn-1

-K (w) iv Ks

stn-1 w)

tn-2

This matrix does not represent a2 quaternion, precisely because of

‘a missing minus sign., We will see this phenomenon again in the
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next section.
Ancther approach is to recognize that since the quaternion
k is the special basis element, we should look for a Fourier ex-

pansion with terms

VX
B(gﬁl.g_ly) e2ﬂktr(6) -

Note the change of 4 to 8 in the argument of B. We now get an

equation for B

1 1 2 1
9% 1,2V 4° (S ”S+Z)
— B} + |-+ + Bw) =0
2 . 4 W 2
ow W
where

w = SW‘I%IV and v = Il}gl_l (%) .

According to Gradshteyn-Ryzhik [3], this is the equation for the

Whittaker functions W, Ll(w) with A = % -‘é’- and
-
1/2

M= (sz -s+1/4) . It is well-known that the Whittaker functions -

appear in the Fourier coefficients of the classical Eisenstein

series, so our result is not surprising.

V.8 Differential Equations for Higher Weights

For weights greater than one, we have defined Eisenstein

series with a matrix representation, hence we expect to have a
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matrix of differential equations. We have shown that up to constants

a general term looks like YZ-—n—s W{vy,s)e (Y-ESX—) . One can fairly
eagily find an equation for the YZ-n-s e (y—?—) terms, and so we are

most interested in finding the differential equations for W{wvy,s).
As before, we can reduce any entry of the matrix W(vy,s) to a

sum of integrals

2 e- -iztr(wu)
upﬁq(lul +1)757 ¢ du
¢ ' :

where w =4 Tryl-(-?-'.”

Now we use a slightly modified idea from Patterson-
Go-l'd,feldk'[S] . Sgppose we consider w to be a complex variable,
w =w, *iw, , sothat the above integral is the limit as w, - 0.

2

Now ftr wu =wu tTwu so

] 0 —
—tr{wu) = u and ——tr wu = 4
ow oW
where
o 9
Baw—ax?v “igw  and ° _a:r Tige. -
1 2 ow 1 2




117,

| -itr(wu)
ﬂtp uq(lﬁlz'?l)"sun e 2 du
C
_ 3 _
P q - < tr{wu)
At a 0 2 -5- 2 :
q: .

+
The interesting term is the 4 . 1f we would have gotien

iP(-i)q , then one could have shown that the differential equations

would be given by -

—itr(wu)
pn(Zia—a:“k) /[”ulzﬂ)'s"n e ° du .
W
(N

One may of course 'refuse' or "forget' to conjugate the 2i factor

when finding the entries of pn (21 -5—_-_— - k) and then one does get
= :

+
the appropriate differential equations with factors of #79 rather
than i¥(-1)% .

Note that

i
: -—1%r wu
/f(luiz F1) SR 2 du
C

is essentially a Bessel function, so differentiating with respect to w

still gives a Bessel function. Thus, we have verified again that
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every entry of W(vy,s) is a sum of Bessel functions.
An amusing observation arises out of this approach., One
can show that the invariant Laplacian for H, the quaternionic upper

half space, is

2 2 2
yz( 82 + 82 + 82) +y‘8§“ where z =utivtky € H,
du ov oy y
. . 9 _
The question is why the linear Y'é'; term appears,

Let B be a function of a positive real variable, Suppose

that we consider y to be a complex variable with y = V1 + iyz .

1/2 2 2 |
Set |yl = (ylz +y;) as usual, and look at (38 5 +;8—2> B(ly]).
S v, 8y,
We get that
2 2
9
==B(ly]) +—5 By
8y1' 8yz
(Bl sy h) g (L ctann)
oY1 \2y, ?ly| Y2\ oy, oly]

Both terms are essentially the same, so consider the second.

o (Y2 _» T\ R AL AT
oy, (m oy D) By (m) TR
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2 ' 2

y y. 2
=—13“~LB(1YU+"’%§-‘£—§ B(ly]) .
ly| 2yl ly1 8yl
Thus,
2 2 2
(e 2)ivh = g e s marl)
oy, oy, ly| alyl 9yl

This calculation may indicate why the linear term appears in the

invariant laplacian of H,

IV.9 Example: FEisenstein Series over K = Q = (4 -23)

Recall the notation of Chapter II Section 6., We let O0 be

the ideal numbers O[(1)], and O1 be the ideal numbers O [pz] ,

2

and 02 be the ideal numbers O [}_3_2].

In particular, UL €0, says

0
' 2 2
that u € O(K), u €O1 says that T, € P, s and M 602 says

that Trz p € P,- Define

/ 8
E(z, s; a,b) = Z p 1q(uz + v) (—-y—z)
= LEO, buz + v
vE.Ob '

for a,b=10,1,2,

it

(3-a) mod 3, b’ = (3-b) mod 3, with

Let a’

r

0 <a’,b’ <2, Then pz = (1_11'1'.2a )(ﬂ;

[

a’ _ b’,, -b
z} and V= (\)Trz )(T‘rz )

i O €0 e p? Pl b
and if € a and v b then M, €p, and vir, €p, .
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Thus,

- ! -n b'-a’
E(z,s; a,b) = Z ) P (c('rrz z) + d}
H

NT'v W

c €p
d€p

5 7 F
. i n, b b’ 2s
(lc(ﬂbr_ a!z.) +d‘2) P ('”2 ) |TT2 l
2

where now the variables ¢ and d are in O(K),
Let X be a cubic character on [0,1,2}, Define

2 Py

2 H

F(Z’S, X) = (F (Z, 5, '}(‘,a))a. =0 1

2

1

F(z,s, %, a} =3 z x{b) Flz,s, ath, b) .
b=0 ‘

In particular,

F(z,s, %,0)

: 8
','1' ' 2 pun(CZ +d) (‘L’i)

3 ¢, d€O(K) lez+a|
1 - & Zs
+_§ 2 x(1) P ez +d) ('_y_z) pn(n'g) ‘ﬂ§|
C,dE.Ez ' ‘CZ+d‘ .
1 -n ' ® n 2s
o x(2) p ez +a) (—-—-Y-—-z—) () L [°7
c,d€p fez +a)

2
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One might think that the principal component F(z,s, ¥, 0)

depends on the choice of ideal number T, which is only deter-

2
mined up to a sixth root of unity., One sees, however, that l 1T2| 'S

" is independent of the root of unity, and since n is even,

n _ n n . n_.n . .
p (i§3ﬂ2)—(iC3) p ('rrz) with (ig3) §3 being a cubic
root of unity, Thus we can define a new character ¥ by

4
x'(a) = x(a)gga . Thus, changing 1., by a root of unity is equiva-

2
lent to changing the character of F(z,s, ¥, 0). In other words, the
family of functions {F(z,s, %,0)] X a cubic character} is defined
independently of the definition of the ideal numbers Z. By
Theorem 6 {the principal theorem), each F(z,s, X, 0) essentially
determines some vector form F(z,s, X') where the ambiguity in
fhe cubic root can be resolved by changing X'. We conclude that
the family of vector modular forms {F(z,s, ¥)| % cubic character }
is defined independentiy of the particular definition of Z.

_ We now consider Dirichlet series associated with
K=0® (1;/:2_3). Note that &= 4/-23 is princii)al. For convenience,
assume n = 0{4) so that “che unit character is trivial, Let ¥ and

¢ L& characters of the ideal class group. Then one can perform

‘tandard manipulations of Euler prbducts to show that
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./_\j(r, s, X, L!Ji) = Lx+s, P, j-i) Lir-s-nt2, X, nt2-i-j)

where we define the '"L-series' by

. ) A\
Lir, X,j) = 5 Z | a]™" x(w (—}-i--)

1 €0(z) ™

where r € €, ¥ 1is any character, and j is a rational integer,
- Just as we did above for the Eisenstein series, one can write these

L-series in terms of the ideal number m, and principal elements

of O(K). For instance,

| 1 : o Y. j-1
L(r.-{-s: q": j"i) = —2* z | VI ® (_"_)

v £€0(K)
1 2 lptetioi) 2 (i . j-i
AL R e T C I R Y Y (———)

1 Madios s e \j-1i
_ vE€p, = |\’I

Once again, as with the Eisenstein series, we may consider

the effect of replacing T, by £( T, with 33 =1, If we rede-

fine the "positive" ideal numbers in terms of the new 1, , then

2 ?
L{r +s, ¢, j~1) changes by (i.‘l)l—:; g :;-J . We can redefine the
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cubic character  as before to remove the §13-J factor., One can

show that for a=0,1,2,

j~3
-— — \) L
z a |v] s (—D = 0 whenever (-1P '=-1 ,

\JG_EZ IV_

Thus, one concludes that the family of L-series {L{r+s, y,j-i) |y
any cubic character} is defined independently of the definition of the
ideal number P From this it follows that the family of Dirichlet
series {Aj(r, s, X’_‘qji)l N, U cubic characters } is also defined

independently of m, .
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