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Abstract

We examine the persistence of a number, defined as the number of iterations of the function which
multiplies the digits of a number until one reaches a single digit number. We give numerical evidence
supporting Sloane’s 1973 conjecture that there exists a maximum persistence for every base. In particular,
we give evidence that the maximum persistence in each base 2 through 12 is 1, 3, 3, 6, 5, 8, 6, 7, 11, 13,
7, respectively.
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1 Introduction

In 1973 Neil J. A. Sloane [6] considered the function that multiplies the digits of a number and formally
conjectured that the number of iterates needed to reach a fixed point is bounded, in particular, in base 10,
he conjectured that one needs at most 11 iterates to reach a single digit. The problem did arise earlier, see
[4] and [1].

Definition 1. Let n =
∑r

j=0 djB
j , with each 0 ≤ dj < B, be the base B expansion of n. We define the

digital product function as f(n) =
∏r

j=0 dj.
The persistence of a number n is defined as the minimum number k of iterates fk(n) = d needed to reach

a single digit d.

Theorem 1. If n ≥ B then n > f(n). If 0 ≤ n < B then f(n) = n is a fixed point. Thus, every n has a
finite persistence.

Proof. Let n =
∑r

j=0 djB
j , with each 0 ≤ dj < B and r > 0. If r > 0 then n ≥ drB

r > dr

∏r−1
j=0 dj = f(n).

If n < B then clearly f(n) = n. So by induction on n one can show that every n has a finite persistence.

For the remainder of this section, assume the base B = 10.
Example: Let n = 23487. Then f(23487) = 2 · 3 · 4 · 8 · 7 = 1344, then f(1344) = 1 · 3 · 4 · 4 = 48, then

f(48) = 4 · 8 = 32, and finally f(32) = 3 · 2 = 6. In other words, f4(23487) = 6, so 23487 has persistence 4.
One easily sees that n = 23114871 or n = 642227 or n = 78432 also have persistence 4, since each of

these has f(n) = 1344. Thus, adding or removing the digit 1 does not change the persistence, nor does
rearranging the digits, nor does replacing digits that are products of smaller digits by these smaller digits
affect the persistence.

In particular, since 288888899777777 has persistence 11, so does 1288888899777777, 11288888899777777
and 111288888899777777, etc., hence there are an infinite number of integers with persistence 11.
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We note some other immediate observations.
Let n = 543210. Then f(n) = 0 so it has persistence 1. More generally, any number with a zero digit

has persistence 1.
Let n = 54321. Then f(54321) = 120 so f2(54321) = 0. More generally, in base 10, any number with a

5 digit, with an even digit, and with no zero digit, has persistence 2.
Some preliminary calculations suggest that persistence depends on the size of the number. We list the

smallest number with a given persistence (avoiding the contentious issue of defining the persistence of single
digit numbers):

persistence least n with given persistence log(log(n))
2 25 1.1690
3 39 1.2984
4 77 1.4688
5 679 1.8750
6 6788 2.1774
7 68889 2.4106
8 2677889 2.6947
9 26888999 2.8395
10 3778888999 3.0934
11 277777788888899 3.5043

y = 0.2614x + 0.5541
R² = 0.9913
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This table and graph might suggest that the persistence grows roughly as the double logarithm of the
number; using a linear fit to the log log of the data, one might expect to find a number of size about 3 · 1017

with persistence 12. Sloane [6] in 1973 showed, however, that no number less than 1050 has persistence 12;
this was extended in 2001 by Carmody [2] to 10233, and in 2010 Diamond [3] extended it to 10333, while we
extend it to 101500.

This paper has grown out of the senior research paper of the first author, intrigued by the mention of
the problem in Richard Guy’s Unsolved Problems in Number Theory book (Problem F25 in [5]).

2 Results

This section summarizes some results which give bounds for the persistence in various bases. We used
MapleTM to calculate these results.

Since a large random number almost always has a zero digit, we can prove the following theorem.

Theorem 2. In any base B, the density of positive integers up to N with persistence greater than 1 ap-
proaches zero as N approaches infinity.
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Proof. Assume B > 2; the next theorem deals with base B = 2.
Consider all numbers with k digits in base B, that is, all integers N with Bk−1 ≤ N < Bk. There are

precisely (B − 1)k integers in this range without a zero digit. Thus, considering all integers in the range
0 < N < Bk, there are

∑k
j=1(B − 1)j = (B − 1)((B − 1)k − 1)/(B − 2) integers without a zero digit. Thus,

the density of integers with persistence greater than 1 up to Bk is

(B − 1)((B − 1)k − 1)
(B − 2)Bk

=
B − 1
B − 2

((
1 − 1

B

)k − 1
Bk

)
< 2

(
1 − 1

B

)k

.

As k approaches infinity, this last term goes to zero, proving the asymptotic density goes to zero.

We now prove the well known result that every number in base B = 2 has persistence 1 (some authors
define the persistence of a single digit to be zero, so we only consider numbers with two or more digits).

Theorem 3. In base 2, each number n > 1 has persistence 1.

Proof. Either n has all digits equal to 1, in which case f(n) = 1, or n has at least one zero digit, in which
case f(n) = 0.

Base 2 is the only base where we can prove Sloane’s conjecture, but we can support his conjecture in
other bases. In particular, in 1972, Beeler and Gosper [1][item 57] showed that any number in base 3 with
persistence greater than 3 must have more than 30739014 digits. We extend this to 109 digits.

Theorem 4. In base 3, if n < 3109
then n has persistence at most 3, and if n < 3109

has persistence 3, then
f(n) = 23 or 215.

Proof. As noted above, if n has a digit of zero then it has persistence 1, and if n has a digit of 1, then the
persistence is unchanged if we remove all 1 digits. Thus, we may assume n has every digit equal to 2, so
f(n) = 2k for some k. One can verify that the powers of 2 below 87 have persistence 1 except 23 and 215

which have persistence 2. Beeler and Gosper showed that each power of 2 between 287 and 230739014contains
a zero in its base 3 expansion, hence has persistence 1. With today’s faster computers, we easily extend this
to all powers of 2 up to 109.

Theorem 5. In base 4, if n < 4109
then n has persistence at most 3. If n < 4109

has persistence 3, then
f(n) = 2a3b where (a, b) = (0, 3), (1, 3), (1, 5), (0, 6), (0, 10), or (1, 11).

Proof. We have already noted that we need not consider any n with a digit of zero or one. Further, if n in
base 4 has the digit 2 at least twice, then f(n) has low-order digit 0, so f(f(n)) = 0. Thus, we may assume
n has at most one digit 2 and the rest of the digits are 3, in other words, f(n) = 2a3b with a ∈ {0, 1}. We
now calculate the persistence of 3b and of 2 · 3b for all b ≤ 109 and note that none have persistence greater
than 1 except for the listed values. For b > 1000 we do not actually calculate the persistence; we merely
verify that there is a zero digit in the last 64 digits.

Theorem 6. In base 5, if n < 510000 then n has persistence at most 6. If n < 510000 has persistence 6, then
f(n) = 24032.

Proof. As before, we need not consider any n with a digit of zero or one. If n has a digit of 4 we may replace
it by two digits 2. Thus, we may assume n has all digits equal to 2 or 3, in other words, f(n) = 2a3b for
a ≥ 0 and b ≥ 0. We now calculate the persistence of 2a3b for a and b with �a/2�+ b ≤ 1000; the factor of 2
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arises because each digit 4 is replaced by two digits 2. For large a + b we merely verify there is a zero digit
in the last 64 digits. The calculations show that each such 2a3b has persistence less than 5 except for 24032

which has persistence 5, hence n has persistence at most 6 for all n < 510000.

Theorem 7. In base 6, if n < 610000 then n has persistence at most 5. If n < 610000 has persistence 5, then
f(n) = 2a5b where (a, b) = (7, 1), (1, 4), (0, 5), (7, 2), (4, 4), (9, 3), (7, 4), (0, 8), or (17, 2).

Proof. As before, we eliminate digit of zero or one, and replace digits of 4 by two digits 2. If n has a digit of
3 and an even digit, then f(f(n)) = 0 so we may assume n either has all digits equal to 2 or 5, or else n has
all digits equal to 3 or 5. In other words, f(n) = 2a5b or 3a5b for a ≥ 0 and b ≥ 0. We now calculate the
persistence of 2a3b for a and b with �a/2� + b ≤ 10000 (the factor of 2 covers the case where each digit 4 is
replaced by two digits 2), and also calculate the persistence of 3a5b where a + b ≤ 10000. The calculations
show that all such expressions have persistence less than 4 except for the listed values which have persistence
4, hence n has persistence at most 5 for all n < 610000.

Theorem 8. In base 7, if n < 71000 then n has persistence at most 8. If n < 71000 has persistence 8, then
f(n) = 2a3b5c where (a, b, c) = (9, 3, 12), (9, 17, 4), (11, 8, 10), (10, 20, 5), (10, 8, 16), (19, 25, 1), (1, 44, 0),
(27, 0, 20), (39, 24, 1), or (11, 39, 3).

Proof. As before, we eliminate digit of zero or one, replace digits of 4 by two digits 2, and now also replace
digits 6 by digits 2 and 3. So we may assume n has all digits equal to 2, 3 or 5. In other words, f(n) = 2a3b5c

for a ≥ 0, b ≥ 0, and c ≥ 0. We now calculate the persistence of 2a3b5c; since we replaced digits of 4 by 2 · 2
and digits of 6 by 2 · 3, in order to guarantee that we have at least 1000 digits, we must consider a, b, c with
a + b + c− min(a, b)− �a−min(a,b)

2 � ≤ 1000. We calculate the persistence of each such 2a3b5c to find that all
such expressions have persistence less than 6 except for the listed values which have persistence 6, hence n
has persistence at most 7 for all n < 71000.

Theorem 9. In base 8, if n < 81000 then n has persistence at most 6. If n < 81000 has persistence 6, then
f(n) = 335472.

Proof. As before, we eliminate digit of zero or one, replace digits of 4 by two digits 2, and now also replace
digits 6 by digits 2 and 3. So we may assume n has all digits equal to 2, 3, 5 or 7. If there are three or more
digits 2, then f(f(n)) = 0. Therefore, f(n) = 2d3a5b7c for a ≥ 0, b ≥ 0, c ≥ 0, and d ∈ {0, 1, 2}. In order to
guarantee that we have at least 1000 digits, we must consider a, b, c with a + b + c ≤ 1000. We calculate
the persistence of each such 2d3a5b7c to find that all such expressions have persistence less than 5 except for
335472 which have persistence 5, hence n has persistence at most 6 for all n < 81000.

Theorem 10. In base 9, if n < 91000 then n has persistence at most 7. If n < 91000 has persistence 7, then
f(n) = 3a5b7c where (a, b, c) = (1, 1, 5), (3, 3, 4), (24, 1, 1), (4, 6, 4), (11, 5, 3), or (16, 7, 1).

Proof. As before, we eliminate digit of zero or one, replace digits of 4 by two digits 2, replace digits 6 by
digits 2 and 3, and now also replace 8 by three digits 2. So we may assume n has all digits equal to 2, 3, 5 or
7. If there are two or more digits 3, then f(f(n)) = 0 so we may assume f(n) = 2a5b7c or f(n) = 3 · 2a5b7c

for a ≥ 0, b ≥ 0, and c ≥ 0. We now calculate the persistence of 3d2a5b7c for d = 0 or 1; in order to
guarantee that we have at least 1000 digits, we must consider a, b, c with �a/3�+ b+ c ≤ 1000. We calculate
the persistence of each such 3d2a5b7c to find that all such expressions have persistence less than 6 except for
the listed values which have persistence 6, hence n has persistence at most 7 for all n < 91000.
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We now deal with base 10. Diamond [3] calculated the persistence of all numbers 2a3b7c and 3a5b7c with
a ≤ 1000, b ≤ 1000 and c ≤ 1000. We verify his calculations and extend them to cover all numbers up to
1500 digits.

Theorem 11. In base 10, if n < 101500 then n has persistence at most 11. If n < 101500 has persistence 11,
then f(n) = 2432075 or 2193476.

Proof. As before, we eliminate digit of zero or one, replace digits of 4 by two digits 2, replace digits 6 by
digits 2 and 3, replace the digit 8 by three digits 2, and now also replace 9 by two digits 3. In base 10, if we
have both a digit 2 and a digit 5 then f(f(n)) = 0. So we may assume f(n) = 2a3b7c or f(n) = 3a5b7c for
a ≥ 0, b ≥ 0, and c ≥ 0. To consider all n with less than 1500 digits, we only need to consider f(n) = 2a3b7c

with �a/3� + �b/2� + c ≤ 1500, as well as f(n) = 3a5b7c with �a/2� + b + c ≤ 1500. We find that all such
expressions have persistence at most 10 (for the larger ones, we simply check if there is a zero digit), hence
n has persistence at most 11 for all n < 101500 except for the listed exceptions.

Theorem 12. In base 11, if n < 11250 then n has persistence at most 13. If n < 11250 has persistence 13,
then f(n) = 242313520717, 2913375776, or 23233535718.

Proof. As before, we eliminate digit of zero or one, replace digits of 4 by two digits 2, replace digits 6 by
digits 2 and 3, replace the digit 8 by three digits 2, and now also replace 9 by two digits 3. We may assume
f(n) = 2a3b5c7d for a, b, c, d ≥ 0. To consider all n with less than 250 digits, we only need to consider
f(n) = 2a3b5c7d with �a/3� + �b/2� + c + d ≤ 250. We find that all such expressions have persistence at
most 12 (for the larger ones, we simply check if there is a zero digit), hence n has persistence at most 13 for
all n < 11250 except for the listed exceptions.

Theorem 13. In base 12, if n < 12250 then n has persistence at most 7. If n < 12250 has persistence 7,
then f(n) = 2558119 or 355176.

Proof. As before, we eliminate digit of zero or one, replace digits of 4 by two digits 2, replace digits 6 by
digits 2 and 3, replace the digit 8 by three digits 2, and now also replace 9 by two digits 3. We may assume
f(n) = 2a5b7c11d or 3a5b7c11d or 6 · 3a5b7c11d for a, b, c, d ≥ 0. To consider all n with less than 250 digits,
we only need to consider f(n) = 2a5b7c11d with �a/3� + b + c + d ≤ 250, and for f(n) = 3a5b7c11d or
6 · 3a5b7c11d we consider �a/2�+ b + c + d ≤ 250. We find that all such expressions have persistence at most
6 (for the larger ones, we simply check if there is a zero digit), hence n has persistence at most 7 for all
n < 12250 except for the listed exceptions.

3 Conclusion

These calculations support Sloane’s conjecture that the persistence is bounded for a given base. This
makes sense since when a product of powers like 2a3b7c has many digits, one expects to find a zero digit
among them. For instance, in base 10, we saw that 2432075 = 937638166841712 has persistence 10, but
2332075 = 468819083420856, 2431975 = 312546055613904, and 2432074 = 133948309548816 all have a digit
of zero. In general, almost all such powers will have a persistence of 1.

We used
The first author tried to develop a method to work backwards, in order to answer questions such as

which numbers iterate to the digit 1. We can devise many such interesting questions. Paul Erdös [8] asked
what would happen if one multiplies only the nonzero digits (i.e., ignore the zero digits). Presumably this
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Erdös multiplicative persistence is no longer bounded, and the question of which numbers iterate to the digit
1 becomes more interesting. We hope this paper inspires others to pursue the many fascinating problems
related to multiplicative persistence.
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