Some Comments on the homework Math 7770 July 3, 2006

2.7.7 The problem is asking for a counterexample. Many of you noted that the construction that works when p is prime will not work for composite, but this does not prove that there is no other construction that could work.

For instance, let $m=p^{2}$ for some prime p. Let $F(1)=1$ and $F(p+1)=2$. Then we want $f(1) \equiv 1 \bmod p^{2}$ and $f(p+1) \equiv 2 \bmod p^{2}$. But if we descend to the modulo p level, this says $f(1) \equiv 1 \bmod p$ and $f(p+1) \equiv$ $f(1) \equiv 2 \bmod p$, impossible. When m is not a power, e.g., if $m=15$, we let $F(3)=1$ and $F(6)=2$ and we have a contradiction when we view any potential f modulo 3 .

What is true is that if you restrict F to just mapping residue classes that are relatively prime to m, then the construction given in the text works once you replace $p-1$ by $\phi(m)$.

In 2.8, many of you are confused about the difference between a quadratic nonresidue and a primitive root.
Claim: A primitive root modulo p is necessarily a quadratic nonresidue modulo that prime.
But the converse is not true. For instance, take $p=31$. Note that $30=2 \cdot 3 \cdot 5$. One can show that 3 is a primitive root by simply calculating the thirty powers of 3 and noting we get all possible residues. Note that $3^{5} \equiv 26 \bmod 31$ is a quadratic nonresidue, since $26^{15} \equiv-1 \bmod 31$ but that 26 has order 6 in the multiplicative group, so is not a generator (primitive root). Similarly, $3^{21} \equiv 15 \bmod 31$ is a nonresidue but 15 has order 10 .

By the way, the converse is close to being true. Quadratic nonresidues are quite likely to be primitive roots. The prime 31 happens to the worst case, and even here 8 out of the 15 nonresidues are primitive roots. A prime like 23 is more typical: 10 out of 11 nonresidues are primitive roots.
2.8.10 I wrote on most of your papers how the book wanted you to approach this, but let me give one more example. Consider the powers of 2 modulo $13: 2,4,8,2^{4}=3,2^{5}=6,2^{6}=12,2^{7}=11,2^{8}=9,2^{9}=5$, $2^{10}=10,2^{11}=7,2^{12}=1$. To solve $x^{2} \equiv 10 \bmod 13$ note that x must be of the form 2^{a} for some a. Thus, the equation is the same as $\left(2^{a}\right)^{2} \equiv 2^{10} \bmod 13$ and so $2^{2 a-10} \equiv 1 \bmod 13$. But since 2 is a primitive root, the exponent $2 a-10 \equiv 0 \bmod 12$. Thus, $a \equiv 5 \bmod 6$ so a is either 5 or 11 . Conclusion: $x \equiv 2^{5} \equiv 6 \bmod 13$ or $x \equiv 2^{11} \equiv 7 \equiv-6 \bmod 13$.
2.8.11 Here the text just wanted you to note that the quadratic residues are precisely the even powers of the generator.

