each block gives $\boldsymbol{x} = (0, .., 1, .., 0)$

eigenvectors of $A^{\mathrm{T}}A,AA^{\mathrm{T}}$ in V,U

How are the properties of a matrix reflected in its eigenvalues and eigenvectors? This question is fundamental throughout Chapter 6. A table that organizes the key facts may be helpful. For each class of matrices, here are the special properties of the eigenvalues λ_i and eigenvectors \boldsymbol{x}_i .

real λ 's	orthogonal $\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j = 0$
all $ \lambda = 1$	orthogonal $\overline{m{x}}_i^{\mathrm{T}} m{x}_j = 0$
imaginary λ 's	$\text{orthogonal } \overline{\boldsymbol{x}}_i^{\mathrm{T}} \boldsymbol{x}_j = 0$
real λ 's	$\text{orthogonal } \overline{\boldsymbol{x}}_i^{\mathrm{T}} \boldsymbol{x}_j = 0$
all $\lambda > 0$	orthogonal
$\lambda_{\max} = 1$	steady state $\boldsymbol{x} > 0$
$\lambda(B) = \lambda(A)$	$\boldsymbol{x}(B) = M^{-1}\boldsymbol{x}(A)$
$\lambda = 1; 0$	column space; nullspace
$\lambda = -1; 1,, 1$	$\boldsymbol{u};\boldsymbol{u}^{\perp}$
$\lambda = \boldsymbol{v}^{\mathrm{T}}\boldsymbol{u}; \ 0,,0$	$\boldsymbol{u};\;\boldsymbol{v}^\perp$
$1/\lambda(A)$	eigenvectors of A
$\lambda(A) + c$	eigenvectors of A
all $ \lambda < 1$	
all $Re \lambda < 0$	
$\lambda_k = e^{2\pi i k/n}$	$oldsymbol{x}_k = (1, \lambda_k, \dots, \lambda_k^{n-1})$
$\lambda_k = 2 - 2\cos\frac{k\pi}{n+1}$	$\boldsymbol{x}_k = \left(\sin\frac{k\pi}{n+1}, \sin\frac{2k\pi}{n+1}, \ldots\right)$
diagonal of Λ	columns of S are independent
diagonal of Λ (real)	columns of Q are orthonormal
	all $ \lambda = 1$ imaginary λ 's real λ 's all $\lambda > 0$ $\lambda_{\max} = 1$ $\lambda(B) = \lambda(A)$ $\lambda = 1; 0$ $\lambda = -1; 1,, 1$ $\lambda = \mathbf{v}^{\mathrm{T}}\mathbf{u}; 0,, 0$ $1/\lambda(A)$ $\lambda(A) + c$ all $ \lambda < 1$ all $Re \lambda < 0$ $\lambda_k = e^{2\pi i k/n}$ $\lambda_k = 2 - 2\cos\frac{k\pi}{n+1}$ diagonal of Λ

diagonal of J

 $\operatorname{rank}(A) = \operatorname{rank}(\Sigma)$

Jordan: $J = M^{-1}AM$

Square: $A = U\Sigma V^{\mathrm{T}}$