each block gives $\boldsymbol{x} = (0, .., 1, .., 0)$ eigenvectors of $A^{\mathrm{T}}A,AA^{\mathrm{T}}$ in V,U How are the properties of a matrix reflected in its eigenvalues and eigenvectors? This question is fundamental throughout Chapter 6. A table that organizes the key facts may be helpful. For each class of matrices, here are the special properties of the eigenvalues λ_i and eigenvectors \boldsymbol{x}_i . | real λ 's | orthogonal $\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j = 0$ | |---|--| | all $ \lambda = 1$ | orthogonal $\overline{m{x}}_i^{\mathrm{T}} m{x}_j = 0$ | | imaginary λ 's | $\text{orthogonal } \overline{\boldsymbol{x}}_i^{\mathrm{T}} \boldsymbol{x}_j = 0$ | | real λ 's | $\text{orthogonal } \overline{\boldsymbol{x}}_i^{\mathrm{T}} \boldsymbol{x}_j = 0$ | | all $\lambda > 0$ | orthogonal | | $\lambda_{\max} = 1$ | steady state $\boldsymbol{x} > 0$ | | $\lambda(B) = \lambda(A)$ | $\boldsymbol{x}(B) = M^{-1}\boldsymbol{x}(A)$ | | $\lambda = 1; 0$ | column space; nullspace | | $\lambda = -1; 1,, 1$ | $\boldsymbol{u};\boldsymbol{u}^{\perp}$ | | $\lambda = \boldsymbol{v}^{\mathrm{T}}\boldsymbol{u}; \ 0,,0$ | $\boldsymbol{u};\;\boldsymbol{v}^\perp$ | | $1/\lambda(A)$ | eigenvectors of A | | $\lambda(A) + c$ | eigenvectors of A | | all $ \lambda < 1$ | | | all $Re \lambda < 0$ | | | $\lambda_k = e^{2\pi i k/n}$ | $oldsymbol{x}_k = (1, \lambda_k, \dots, \lambda_k^{n-1})$ | | $\lambda_k = 2 - 2\cos\frac{k\pi}{n+1}$ | $\boldsymbol{x}_k = \left(\sin\frac{k\pi}{n+1}, \sin\frac{2k\pi}{n+1}, \ldots\right)$ | | diagonal of Λ | columns of S are independent | | diagonal of Λ (real) | columns of Q are orthonormal | | | all $ \lambda = 1$
imaginary λ 's
real λ 's
all $\lambda > 0$
$\lambda_{\max} = 1$
$\lambda(B) = \lambda(A)$
$\lambda = 1; 0$
$\lambda = -1; 1,, 1$
$\lambda = \mathbf{v}^{\mathrm{T}}\mathbf{u}; 0,, 0$
$1/\lambda(A)$
$\lambda(A) + c$
all $ \lambda < 1$
all $Re \lambda < 0$
$\lambda_k = e^{2\pi i k/n}$
$\lambda_k = 2 - 2\cos\frac{k\pi}{n+1}$
diagonal of Λ | diagonal of J $\operatorname{rank}(A) = \operatorname{rank}(\Sigma)$ Jordan: $J = M^{-1}AM$ Square: $A = U\Sigma V^{\mathrm{T}}$