How are the properties of a matrix reflected in its eigenvalues and eigenvectors?

This question is fundamental throughout Chapter 6. A table that organizes the key

facts may be helpful. For each class of matrices, here are the special properties of the

eigenvalues \; and eigenvectors x;.
Symmetric: AT = A
Orthogonal: QT = Q!
Skew-symmetric: AT = —A
Complex Hermitian: AT =4
Positive Definite: > Az > 0
Markov: m;; > 0,> " m;; =1
Similar: B= M~1AM
Projection: P = P? = PT
Reflection: I — 2uu"
Rank One: uv®
Inverse: A}
Shift: A+ cl
Stable Powers: A™ — 0
Stable Exponential: e4* — 0
Cyclic Permutation: P(1,..,n) = (2,..,n,1)
Tridiagonal: —1,2, —1 on diagonals

Diagonalizable: SAS™!
Symmetric: QAQ"
Jordan: J =M 1AM
Square: A =UXVT
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columns of S are independent

columns of () are orthonormal
each block gives ¢ = (0, .., 1,..,0)
eigenvectors of ATA, AAT in V,U



