Practice Third Midterm Math 1335

5 April 2006

Please show all your work and relevant ideas.

1. Consider the Cobb-Douglas production function $P(L, C)=3.5 L^{0.4} C^{0.6}$ where P is the production in millions of dollars, L is the labor expenditures in millions of dollars, and C is the annual capital investment in millions of dollars.

Find the marginal productivity with respect to labor. Calculate this when $\mathrm{L}=10$ and $\mathrm{C}=30$, then again with $\mathrm{L}=20$ and $\mathrm{C}=20$.

Find the marginal productivity with respect to capital. Calculate this when $\mathrm{L}=10$ and $\mathrm{C}=30$, then again with $\mathrm{L}=20$ and $\mathrm{C}=20$.

You have a million dollars to invest in either labor or capital. For $\mathrm{L}=10$ and $\mathrm{C}=30$, then again with $\mathrm{L}=20$ and $\mathrm{C}=20$, which should you invest in and why?
2. Find these partial derivatives for this volume function V :

$$
V(x, y, z, \lambda)=x y z-2 \lambda x-2 \lambda y-\lambda z+100 \lambda
$$

(a.) $\frac{\partial V}{\partial x}$
(b.) $V_{z}(1,2,3,4)$
(c.) V_{λ}
(d.) $\frac{\partial}{\partial x} \frac{\partial V}{\partial \lambda}(1,2,3,4)$
(e.) $V_{y z}$
3. Find these partial derivatives for this profit function π :

$$
\pi(s, p)=27 s-10 s^{2}-3 s p+35 p-25 p^{2}+140
$$

(a.) $\frac{\partial \pi}{\partial s}$
(b.) $\pi_{p}(2,3)$
(c.) $\pi_{s s}$
(d.) $\frac{\partial}{\partial p} \frac{\partial \pi}{\partial s}(2,3)$
(e.) $\pi_{p s}$

Section 8.2 numbers $2,4,6,12,14,16,18$
4. Looking at the coefficients of these quadratic functions, you should be able to tell if this is mountainshaped (maximum), cup-shaped (minimum), or saddle-shaped. Briefly indicate which and why.
(a.) $-3.262 x^{2}+2.48 x-13.5 y^{2}+2.69 x y+14.0 y+152$
(b.) $3.262 x^{2}-2.48 x+2.69 x y+14.0 y-13.5 y^{2}-152$
(c.) $3.262 x^{2}-2.48 x+13.5 y^{2}-2.69 x y-14.0 y+152$
(d.) $0.262 x^{2}+21.48 x+0.135 y^{2}+26.98 x y+1.40 y+152$
(e.) $-0.262 x^{2}+21.48 x-0.135 y^{2}+26.98 x y+1.40 y+152$
(d.) $0.262 x^{2}+21.48 x-0.135 y^{2}+26.98 x y+1.40 y+152$
(e.) $-0.0326 x^{2}+24.48 x-0.0135 y^{2}+0.0069 x y+14.0 y+12$
(f.) $0.0326 x^{2}-24.48 x-0.0135 y^{2}+0.0069 x y-14.0 y+12$
(g.) $-0.0326 x^{2}-24.48 x+0.0135 y^{2}-0.0069 x y+14.0 y+12$
(h.) $0.0326 x^{2}+24.48 x+0.0135 y^{2}+0.0069 x y+14.0 y+12$
5. Consider these matrices:

$$
A=\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1 \\
x_{4} & y_{4} & 1 \\
x_{5} & y_{5} & 1 \\
x_{6} & y_{6} & 1 \\
x_{7} & y_{7} & 1
\end{array}\right], M=\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right], Z=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5} \\
z_{6} \\
z_{7}
\end{array}\right]
$$

Find $A^{T} \cdot A$ and $A^{T} \cdot Z$.
6. Refer to the previous problem. Show the algebra that gets us from $A M \sim Z$ to the formula that is used to calculate the regression coefficients, namely, $M=\left(A^{T} \cdot A\right)^{-1} A^{T} \cdot Z$. Why is it wrong to solve for M via $M=A^{-1} Z$?

