Third Midterm Exam Math 1335, 10 April 2006, Section 11

Please show all your work and relevant ideas.

1. Consider the Cobb-Douglas production function $P(L, C)=5.1 L^{0.333} C^{0.667}$ where P is the production in millions of dollars, L is the labor expenditures in millions of dollars, and C is the annual capital investment in millions of dollars.
(a.) Find the marginal productivity with respect to labor and calculate this when $L=20$ and $C=30$.
(b.) Find the marginal productivity with respect to capital and calculate this when $L=20$ and $C=30$.

You have a million dollars to invest in either labor or capital. Which should you invest in and why?
2. Find these partial derivatives for this profit function π :

$$
\pi(s, t)=17 s-12 s^{2}-2 s t+40 t-21 t^{2}+140
$$

(a.) $\frac{\partial \pi}{\partial t}(3,2)$
(b.) π_{s}
(c.) $\pi_{s s}$
(d.) $\frac{\partial}{\partial s} \frac{\partial \pi}{\partial t}(3,2)$
3. Find the critical points for this function:

$$
f(w, y)=20 w^{2}+30 y^{2}-50 w y+20 w-40 y+12321
$$

4. Looking at the coefficients of these quadratic functions, you should be able to tell if this is mountainshaped (maximum), cup-shaped (minimum), or saddle-shaped. Briefly indicate which and why.
(a.) $-32.8 a^{2}-23.5 b^{2}+2.69 a b+31.5 a+14.2 b-152$
(b.) $32.8 a^{2}-23.5 b^{2}-2.69 a b-31.5 a-14.2 b-152$
(c.) $32.8 a^{2}+23.5 b^{2}+2.69 a b+31.5 a-14.2 b+152$
(d.) $0.0262 p^{2}+2.48 p-0.0135 q^{2}+2.90 p q+1.84 q+1052$
(e.) $0.0262 p^{2}-2.48 p+0.0135 q^{2}+2.90 p q-1.84 q+1052$
(f.) $-0.0262 p^{2}-2.48 p-0.0135 q^{2}-2.90 p q-1.84 q+1052$
5. Consider these matrices:

$$
C=\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1 \\
x_{4} & y_{4} & 1 \\
x_{5} & y_{5} & 1 \\
x_{6} & y_{6} & 1 \\
x_{7} & y_{7} & 1 \\
x_{8} & y_{8} & 1
\end{array}\right], U=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], P=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5} \\
z_{6} \\
z_{7} \\
z_{8}
\end{array}\right]
$$

Find $C^{T} \cdot C, C \cdot U$, and $C^{T} \cdot P$.
6. Refer to the previous problem. Show the algebra that gets us from $C U \sim P$ to the formula that is used to calculate the regression coefficients, namely, $U=\left(C^{T} \cdot C\right)^{-1} C^{T} \cdot P$. Why is it wrong to solve for U via $U=C^{-1} P$?

