Third Midterm Exam Math 1335, 10 April 2006, Version 1

Please show all your work and relevant ideas.

1. Consider the Cobb-Douglas production function $P(L, C)=4.6 L^{0.3} C^{0.7}$ where P is the production in millions of dollars, L is the labor expenditures in millions of dollars, and C is the annual capital investment in millions of dollars.
(a.) Find the marginal productivity with respect to labor and calculate this when $L=20$ and $C=50$.
(b.) Find the marginal productivity with respect to capital and calculate this when $L=20$ and $C=50$.

You have a million dollars to invest in either labor or capital. Which should you invest in and why?
2. Find these partial derivatives for this volume function V :

$$
V(x, y, z, \lambda)=x^{2} y^{2} z^{2}-3 \lambda x^{2}-3 \lambda y^{2}-\lambda z^{2}+100 \lambda^{2}
$$

(a.) $\frac{\partial V}{\partial \lambda}$
(b.) $V_{x}(4,2,3,1)$
(c.) $\frac{\partial}{\partial y} \frac{\partial V}{\partial x}(4,2,3,1)$
(d.) $V_{x \lambda}$
3. Find the critical points for this function:

$$
f(m, n)=60 m^{2}+10 n^{2}-50 m n+40 m-30 n+1221
$$

4. Looking at the coefficients of these quadratic functions, you should be able to tell if this is mountainshaped (maximum), cup-shaped (minimum), or saddle-shaped. Briefly indicate which and why.
(a.) $-0.0361 x^{2}+2.899 x-0.0157 y^{2}+0.68 x y+1.401 y+12.45$
(b.) $0.0361 x^{2}+2.899 x+0.0157 y^{2}-0.68 x y+1.401 y+12.45$
(c.) $0.0361 x^{2}-2.899 x-0.0157 y^{2}+0.68 x y-1.401 y+12.45$
(d.) $-0.361 x^{2}+244.8 x-0.157 y^{2}+0.0068 x y+140.1 y+1245$
(e.) $0.361 x^{2}-244.8 x+0.157 y^{2}+0.0068 x y-140.1 y+1245$
(f.) $-0.361 x^{2}+244.8 x+0.157 y^{2}-0.0068 x y+140.1 y-1245$
5. Consider these matrices:

$$
A=\left[\begin{array}{lll}
a_{1} & b_{1} & 1 \\
a_{2} & b_{2} & 1 \\
a_{3} & b_{3} & 1 \\
a_{4} & b_{4} & 1 \\
a_{5} & b_{5} & 1 \\
a_{6} & b_{6} & 1 \\
a_{7} & b_{7} & 1
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], C=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6} \\
c_{7}
\end{array}\right]
$$

Find $A^{T} \cdot A$ and $A^{T} \cdot C$.
6. Refer to the previous problem. Show the algebra that gets us from $A X \sim C$ to the formula that is used to calculate the regression coefficients, namely, $X=\left(A^{T} \cdot A\right)^{-1} A^{T} \cdot C$. Why is it wrong to solve for X via $X=A^{-1} C$?

