The Chemistry of Calculus: The Basic Formulas and Rules for Differentiation

Structure of Functions

Whenever you are faced with a function, determine its structure! Is it a sum, a product, a quotient, or a function inside a function? What parts are constants, either additive constants or multiplicative constants? Often it is helpful to put a function into a more 'power-full' form: $1 / x^{2}=x^{-2}$, $\sqrt{1-x^{2}}=\left(1-x^{2}\right)^{1 / 2}$.

'ATOMS': Basic Formulas for Differentiation

Additive Constants: $\frac{d}{d x}(c)=0$
Powers: $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad$ Note: powers have variable in bottom, constant in top.
Exponentials: $\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad$ Self-replicating! Note: exponentials have variable in exponent and constant in bottom.

Logarithms: $\frac{d}{d x} \ln (x)=\frac{1}{x}=x^{-1}$
Trig functions: $\frac{d}{d x} \sin (x)=\cos (x), \frac{d}{d x} \cos (x)=-\sin (x)$

'Molecular Bonds': Basic Rules for Differentiation

Multiplicative Constant Rule: $\frac{d}{d x}(c \cdot f(x))=c \frac{d}{d x} f(x) \quad$ (Constants are your friends!)
Sum Rule: $(f+g)^{\prime}=f^{\prime}+g^{\prime} \quad$ The derivative of a sum is the sum of the derivatives.
Product Rule: $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$
Quotient Rule:

$$
\left(\frac{f}{g}\right)=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

Chain Rule: 'a function inside a function'

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

The derivative of the outside function times the derivative of the inside.
Here u is the inside function: the $\mathrm{g} \mathbf{U}$ ts of the function, the Unified inside.
Special Cases that Students often Memorize:

$$
\frac{d\left(x^{2}\right)}{d x}=2 x, \frac{d\left(e^{a x}\right)}{d x}=a e^{a x}, \frac{d\left(b^{x}\right)}{d x}=\ln (b) b^{x}
$$

The Chemistry of Calculus: The Basic Formulas and Rules for Integration

Structure of Functions

When integrating, you should determine the structure of the function being integrated. Is it a sum or is there a function inside a function? What parts are constants, either additive constants or multiplicative constants? If it is a product or quotient, sometimes algebra can transform the function. Often it is helpful to put a function into a more 'power-full' form: $1 /(2 x+3)^{2}=(2 x+3)^{-2}$, $\sqrt{1-x^{2}}=\left(1-x^{2}\right)^{1 / 2}$.

'ATOMS': Basic Formulas for Integration

Antiderivative: $\int d x=x+C$
Powers: $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad$ if $n \neq-1$.
When $n=-1: \int \frac{1}{x} d x=\ln (x)+C$
Exponentials: $\int e^{x} d x=e^{x}+C \quad$ Self-replicating!
Trig functions: $\int \sin (x) d x=-\cos (x)+C, \int \cos (x) d x=\sin (x)+C$

'Molecular Bonds': Basic Rules for Integration

Multiplicative Constant Rule: $\int c \cdot f(x) d x=c \int f(x) d x \quad$ (Constants are your friends!)
Sum Rule: $\int(f+g)=\int f+\int g \quad$ The integral of a sum is the sum of the integrals.
U-Substitution - the chain rule backwards: Choose ' u ' to be the " united" inside function (the gUts inside a function). Calculate 'du' and substitute everywhere, including the limits.

Integration by Parts-the product rule backwards:

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Special Algebra Techniques to Transform Integrand: partial fraction decomposition, trig substitution, complex exponentials, etc.

Special Cases that Students often Memorize:

$$
\int x d x=x^{2} / 2+C, \int x^{2} d x=x^{3} / 3+C, \int e^{a x} d x=e^{a x} / a+C
$$

