Geometric Series Part 2

We can also find the sum of an infinite geometric series using classical high school algebra. 

Given an infinite repeating decimal such as 0.33333..., there is a standard technique to convert it to a fraction:

A       = 0.333333...
10 A  = 3.33333...

Subtracting the first equation from the second, we get
9  A   = 3           and from this we see that  A = 3/9 = 1/3. 

A repeating decimal is a disguised form of an infinite geometric series, so it is no accident that we can use this same idea to calculate infinite geometric series! 

A      =  1  +  r   +  r²   +  r³   +    ...
r A   =           r   +  r²   +  r³   +  r4   +  ...
Subtracting,
A  -  r A  =  1   and so  A ( 1 - r ) = 1  and so   A = 1 / ( 1 - r ).

In other words,

1  +  r   +  r²   +  r³   +  r4   +  ... = 1 / ( 1 - r ). 

For instance, if    r  =  1/10,     1 + 0.1 + 0.01 + 0.001 + ...   =  1 / (1 - 1/10 )  =  10 / 9.
If    r  =  1/2,    1 + 1/2 + 1/4 + 1/8 + ...   =  1 / ( 1 - 1/2 )  =  2.

If you are interested in more proofs of the geometric series sum, please see these references.  

Next:  The Final Answer: How Long does the Ball Bounce?

Previous:  Lowdown on Geometric Series Part 1

Index of All Pages

 

         copyright: Besson and Styer, Villanova University   12/22/2007  

Hit Counter